中国北方沿海竿虾虎鱼(Luciogobius guttatus) 隐存多样性与群体历史动态^{*}

邓颖达^{1,2} 薛东秀^{1,3} 刘进贤^{1,3}

(1. 中国科学院海洋研究所 海洋生态与环境科学重点实验室 青岛 266071; 2. 中国科学院大学 北京 100049;3. 青岛海洋科学与技术国家实验室海洋生态与环境科学功能实验室 青岛 266071)

摘要 竿虾虎鱼(*Luciogobius guttatus*)隶属于拟虾虎鱼亚科(Gobionellinae),已知分布于中国沿海、 朝鲜半岛和日本的岩基砾石质潮间带。日本学者发现竿虾虎鱼在日本沿海存在三个谱系,但在我国, 针对竿虾虎鱼的研究仅限于形态测量和野外调查记录。基于线粒体 DNA 和核基因序列标记,本研究 从系统发育和群体遗传两个角度,揭示竿虾虎鱼在我国北方沿海的隐存多样性与群体历史。结果表 明,与日本分布的竿虾虎鱼对比,我国北方沿海分布的竿虾虎鱼存在以崂山为潜在屏障的偏南、偏北 两个谱系,分别对应于日本沿海的谱系 A 和谱系 C,缺少谱系 B。本研究推测,末次冰期对竿虾虎鱼 的有效种群扩张和群体的分化及扩散起到关键作用,且不同谱系对冰期气候变化的反应并不一致。本研 究初步查明了中国北方沿海竿虾虎鱼的隐存多样性现状,为我国竿虾虎鱼的保护提供了分子依据。 关键词 线粒体 DNA;核基因;隐存多样性;竿虾虎鱼;群体分化 中图分类号 O346 doi;10.11693/hyhz20160300040

由于地理隔离造成的基因交流限制和环境变化 带来的选择压力、在近缘物种或种内谱系间、分子水 平的显著分化可能先于其形态学差异而发生。然而, 这些从形态学无法或难以区分的隐存单元可能预示 着新物种的形成。线粒体 DNA 是海洋鱼类系统发育 研究中常用的一种分子标记。由于其突变速率较高、 且在脊椎动物中单亲遗传、极少发生同源重组,故线 粒体 DNA 多态性位点丰富且连续, 对历史环境变化 响应迅速, 在近缘鱼类物种间具有较高的解析度。 竿 虾虎鱼属(Luciogobius)是虾虎鱼科(Gobiidae)、拟虾虎 鱼亚科(Gobionellinae)中的一个特化属,已知分布于 中、日、韩沿海(伍汉霖等, 2008)。早在 1932 年, 我 国学者 Chen Johnson(1932)首先报道了竿虾虎鱼属在 我国沿海的分布记录、并从形态学角度对其分类地 位作出初步探讨。竿虾虎鱼属物种成体的第一背鳍完 全退化消失,无鳞,侧线系统退化,且脊椎数目增加 以致躯干延长(伍汉霖等, 2008; Yamada *et al*, 2009), 使得本属从形态上容易与其它属相互区分。但在本属 内部的谱系甚至物种之间,由于栖息地适应性的趋 同进化,从形态上难以有效进行分类。线粒体是细胞 能量代谢的主要场所,对于从寒温带到亚热带广泛 分布的竿虾虎鱼属而言,更新世东亚沿海气候和地 理环境的变化可能在其线粒体 DNA 中留下了深刻的 印迹;尤其在形态分类不一致的情况下,线粒体 DNA 标记有助于揭示竿虾虎鱼属物种的隐存多样性, 从而促进明确一致的系统分类,并反演群体的近期 历史动态。

竿虾虎鱼(Luciogobius guttatus)是竿虾虎鱼属的 常见种之一。竿虾虎鱼一龄鱼即性成熟,怀卵量 370—1542 粒,冬季产卵;二龄鱼体长 4—6cm(伍汉 霖等,2008),是一种底内生活型(infaunal)的虾虎鱼; 加之其成体常栖息于暖水潮间带砾石之下,捕食底

^{*} 中国科学院百人计划项目-刘进贤; 国家基金委-山东省联合基金项目, U1406403 号。邓颖达, 硕士研究生, E-mail: dyda1990@163.com

通讯作者:刘进贤,博士生导师,研究员; E-mail: jxliu@qdio.ac.cn;薛东秀,助理研究员, E-mail: xuedongxiu@qdio.ac.cn 收稿日期: 2016-03-04,收修改稿日期: 2016-04-19

栖无脊椎动物、生殖季节时雄性个体在石下筑巢护 卵. 故竿虾虎鱼亦是一种生态功能相对独立且迁移 能力较弱的潮间带捕食者、可能会通过下行控制效 应和生物扰动效应影响其栖息地底栖生物群落的物 种多样性。日本学者 Mukai 等(2004)从分子层面(线粒 体 16S rRNA)报道了竿虾虎鱼(L. guttatus)在日本沿海 的谱系组成和地理分布、发现竿虾虎鱼种内存在三 个谱系。此后, 这一结果被 Yamada 等(2009)用核基因 外显子和线粒体 DNA 标记(cvtb)进一步证实。但这三 个谱系在本属的线粒体基因树上并不总为单系群、 且其中一个分布较广并且最先形成的谱系(根据 Yamada 等(2009)的命名,为 A 谱系)与另外两个谱系 (B和C)的遗传距离(P-distance)在 cvtb 上都超过了 2% 的 DNA 条形码种级经验阈值(Avise et al, 1999; Hebert et al, 2003)。然而, 我国分布的竿虾虎鱼隐存 多样性的研究仍未见报道。为查明中国沿海竿虾虎鱼 的谱系组成、并深入比较谱系间历史动态差异、我们 根据《中国动物志·硬骨鱼纲·鲈形目·虾虎鱼亚目》的 记载、采集了竿虾虎鱼在我国北方沿海的群体样本、 选用两个线粒体 DNA 片段(cytb 和控制区 mcr), 和 一个核基因外显子(钙离子通道蛋白脑亚型,亦即: 兰尼碱受体 3, ryr3)为分子标记,并结合已发表的日 本群体的基因序列,对我国北方沿海竿虾虎鱼的隐 存多样性与群体历史动态进行了初步研究。研究结果 将加深对我国海岸带鱼类多样性的认识,并为我国 沿海竿虾虎鱼的保护提供分子依据。

1 材料与方法

1.1 样品采集

于 2013—2015 年共在我国北方沿海 10 个位点采 集到 125 条竿虾虎鱼个体(图 1)。所有个体均是退潮 时在潮间带手工捕捉采集,活体带回实验室,无水乙醇 保存备用。其中,2013 年采样点为:青岛市汇泉湾(HQ, 4月,12 个个体)、石老人海水浴场(SLR,8月,8个个体)、 崂山仰口(LS,6月,12 个个体);2014 年 10 月采样点为: 荣成俚岛(RC,11 个个体)、大连黑石礁(DL,21 个个体); 2015 年 4 月青岛采样点:汇泉湾(12 个个体)、石老人海 水浴场(12 个个体)、唐岛湾(td,5 个个体)、金沙滩(js,7 个个体)、栈桥(zq,8 个个体)、第三海水浴场(sy,9 个个 体)、麦岛(md,8 个个体)。

Fig.1 Distribution of lineages of *L. guttatus* 注:黑色实心圆表示竿虾虎鱼谱系 A 主导分布;黑边空心圆表示谱系 B 主导分布;正方形代表谱系 C 主导分布。QD:青岛;HQ:汇泉; SLR:石老人;LS:崂山;RC:荣成;DL:大连;td:唐岛湾;js:金沙滩;zq:栈桥;sy:第三海水浴场;md:麦岛

1.2 DNA 提取

剪取鳍条组织提取总 DNA, 提取过程按照苯酚-氯仿-异戊醇法(Sambrook *et al*, 1989)进行。所提取的 总 DNA 溶于 TE 溶液, -20°C 保存。

1.3 PCR 扩增

使用已发表的引物及自主设计的引物(表 1)进行 目标 DNA 片段的 PCR 扩增,具体 PCR 反应体系为: 2×PCR-mix (东盛)12.5µL,H₂O 9.5µL,正反向引物各 1μL(浓度 0.1mmol/L), 模板总 DNA 1μL, 共 25μL; PCR反应程序为: 94°C预变性10min, 94°C变性1min, 退火 1min (温度见表 1), 72°C 延伸 1min; 循环 35次; 然后在 72°C 终末延伸 10min。

1.4 序列测定

采自 2013—2014 年的样本至少在一个基因标记 上被测序(表 2), 各片段皆为双向测序。2015 年采自 汇泉湾和石老人海水浴场的样本仅测定了控制区 mcr

表1 本研究使用引物及其来源、用途、退火温度和序列					
	Tab.1 Source, application, annealing temperature, and sequence of primers used in this study				
引物名称	标记名称	引物来源	使用环节	退火温度	引物序列 5'—3'
L14850-CYBa	cytb	Yamada et al, 2009	PCR/Sanger sequencing	45°C	GCCTGATGAAACTTTGGCTG
H15973-Prob	cytb	Yamada et al, 2009	PCR/Sanger sequencing	45°C	TTGGGAGTTAGKGGTRRGAGTT
fDloopThrF	mcr	Cheng et al, 2012	PCR/Sanger sequencing	57°C	AGCACCGGTCTTGTAAACCG
fDloopPheR	mcr	Cheng et al, 2012	PCR/Sanger sequencing	57°C	GGGCTCATCTTAACATCTTCA
RYR3F2	ryr3	Yamada et al, 2009	PCR/Sanger sequencing	56°C	TTGACATGTTCCTGAAGCTGAAG
RYR3R2	ryr3	Yamada et al, 2009	PCR/Sanger sequencing	56°C	AGAAGAAGCCGGTGATCACCTCCT
LgCA*	mcr	本研究	PCR-琼脂糖电泳	58°C	ATGATATGCTTGTATTATATACTTA

注:*:与 fDloopThrF 一同用于唐岛湾(td)、金沙滩(js)、栈桥(zq)、第三海水浴场(sy)以及麦岛(md)样本的谱系鉴定

片段序列。测序由上海英潍捷基公司完成。2015 年 采自唐岛湾、金沙滩、栈桥、第三海水浴场以及麦岛 的样本仅通过一对谱系特异性引物(fDloopThrF 和 LgCA,引物LgCA 根据 mcr 中的一处长 20bp 的谱系 C 特异性插入序列自主设计)用 PCR-琼脂糖凝胶电泳方 法检查其是否属于谱系 C。

表 2 测序群体在每个标记上的测序个体数 Tab.2 The number of individuals sequenced at each marker per population

	cytb	mcr	ryr3
汇泉 2013	7	8	4
汇泉 2015	0	12	0
石老人 2013	8	8	7
石老人 2015	0	12	0
崂山	5	12	1
荣成	11	11	7
大连	21	14	5

1.5 序列比对

使用 DNAStar 软件包中的 SeqMan 程序查看测序 峰图,除去引物区,舍弃双峰区段并对稀有变异位点 逐个检查。在 MegAlign 程序中用 ClustalV 算法进行 初步比对,结果保存为 paup 文件,后者再经 DNASP 软件转为 fasta 文件。在 MEGA5(Tamumra *et al*, 2011) 中对 fasta 格式的序列进行再次比对后,根据日本学 者已发表的同源序列,对标记 *cytb* 和 *ryr3* 截至相同长 度用于后续分析;对线粒体控制区 *mcr* 保留测序全 长。考虑到不同标记的突变速率、碱基替代模型和选 择压力可能存在差异,我们没有把不同标记拼接成 联合片段。本研究所提交序列的 GenBank 登录号为 KT598738-KT598761(*ryr3*),KT598808-KT598860(*cytb*), KT598970-KT599022(*mcr*);本研究引用序列登录号 为 AB503858-AB504047(*cytb*), AB504202-AB504232 (*ryr3*), KF486456-KF486460(*ryr3*)_o

1.6 系统发育分析

2014 年测序所获得的所有竿虾虎鱼的 cytb 片段和 ryr3 片段,在 MEGA5(Tamumra et al, 2011)中筛选最 佳碱基替代模型(BIC 信息标准值最低)并构建最大似 然树, 自举 1000 次。另外, 分别基于 cytb 和 ryr3 两 个基因片段, 应用 Beast 程序(Drummond et al, 2012) 中的贝叶斯方法(同时考虑遗传距离、替代模型和碱 基顺序)并加入外群物种(Yamada et al, 2009), 构建了 贝叶斯系统发育树。突变速率设为正态分布、其均值 在 cytb 为 2.7%每碱基每百万年(Yamada et al, 2009), rvr3的突变均速按总体P遗传距离在两个标记间的比 例设定: 其标准差的设定保证 95%可能的突变速率 落入 0.1%—10%每碱基每百万年的取值区间内; 各 标记的突变模型与相应最大似然树所用模型相同; 马尔科夫链长 200 万代, 采用 Speciation: Yule Process 假设,每 1000 代建立一棵系统发育树; 舍弃前 10% 后将所有分枝平均后验概率最高者选出、在 FigTree 中显示最后所得树形图(贝叶斯系统发育树)。

1.7 群体分化与历史动态分析

针对单一谱系 A 或 C, 在群体分化方面, 应用 DNASP 软件(Librado *et al*, 2009)比较各分子标记的 多态性(核苷酸多态度、多态位点数目、单倍型数目); 通过 Arlequin3.5 软件(Excoffier *et al*, 2010)计算 *cytb* 和 *mcr* 基因片段所揭示的群体间遗传分化指数 F_{ST} 及 其显著性概率 *P* 值。另外,为比较中日大群体(所有 中国沿海单倍型和所有日本沿海单倍型)间的遗传分 化,亦应用 Arlequin3.5 软件构建竿虾虎鱼谱系间的 单倍型最小进化网络图。最后,应用 Beast 软件包中 的 Tracer 程序,选择与本文系统发育分析同样的突变 速率分布和碱基替代模型,但采用 Coalescent: Bayesian Skyline 假设与 linear stepwise 溯祖模型, 对 每个谱系进行了有效种群大小的历史动态反演, 其 结果以 Bayesian skyline plots(BSP)方式呈现。

此外,为探讨竿虾虎鱼谱系 A 中群体内的遗传 变异是否在时间上具有稳定性,我们对所获得的汇 泉湾和石老人海水浴场的 2013 年群体样本和 2015 年 群体样本的 *mcr* 基因片段序列进行比对分析,应用 MEGA5 软件构建 ML 进化树。

2 结果与分析

2.1 DNA 分子标记多态性比较

在本研究中,所获得的 *cytb* 的 608bp 片段中共有 103 个多态性位点,在 52 个测序个体中检测到 22 个 单倍型,核苷酸多样性 π 值为 0.069;所获得的 *mcr* 的 917bp 片段中共有 88 个多态性位点与 27 个 indel 位点,在 53 个测序个体(不包括 2015 年采集的汇泉湾 和石老人群体样品)中检测到 40 个单倍型,核苷酸多 样性 π 值为 0.036(考虑 indels: 0.047);所获得的核基 因 *ryr3* 的 505bp 片段中共有 12 个多态性位点,在 24 个测序个体中区分出 10 个单倍型,核苷酸多样性 π 值为 0.0063。

2.2 竿虾虎鱼隐存多样性及其地理格局

如图 1 所示,中国北方沿海分布有偏南、偏北两个 竿虾虎鱼的谱系,分别对应竿虾虎鱼日本沿海群体的 谱系 A 和 C(Yamada *et al*, 2009)。其中,偏南谱系(谱系 A)集中分布在青岛市石老人海域及其以南(除一个个体 混居于大连群体中,两个个体混居于荣成群体外);而 偏北谱系(谱系 C)只分布在崂山沿海及其以北。

2.3 谱系间分子系统发育比较

结合已发表的 L. guttatus 的同源基因序列 (Yamada et al, 2009), 我们发现从线粒体 DNA 片段和 核基因外显子片段上分开的竿虾虎鱼谱系能够相互 对应, 但分支顺序不同(图 2)。且当加入外群时, 基于 ryr3 构建的贝叶斯树揭示竿虾虎鱼谱系 C 最先分出, 谱系 B 其次, 谱系 A 处于树的顶端; 而基于线粒体基 因 cytb 构建的贝叶斯树则表明谱系 B、C 先聚成一枝, 谱系 A 单成一枝并先与其他竿虾虎鱼属物种相聚(图 3)。 2.4 中日沿海群体分化与有效种群扩张

对单一谱系从群体间遗传分化指数 F_{ST} 值判断, 在中日群体间, 竿虾虎鱼谱系 A 在线粒体 *cytb* 标记上 的遗传分化较大(F_{ST} = 0.12, P<0.05), 但谱系 C 在中 日大群体间的分化更具显著性(F_{ST} = 0.31, P<0.01)。 单倍型网络图(图 4)更直观地揭示了中日大群体间的

图 2 基于 cytb 基因片段(上)和 ryr3 基因片段(下)构建的竿 虾虎鱼 ML 进化树

遗传分化。基于线粒体 *cytb* 我国所有测序群体除大连 -荣成外,其余两两群体间皆存在显著的遗传分化 $(0.17 < F_{ST} < 0.23, P < 0.05);使用线粒体控制区标记$ *mcr* $亦检测到较大的群体间遗传分化(<math>-0.02 < F_{ST} < 0.96$), 且汇泉-石老人($F_{ST} = 0.08$),大连-荣成($F_{ST} = -0.02$), 大连-崂山间($F_{ST} = 0.00$)分化不显著(P > 0.05),其余两 两群体间的遗传分化均达到显著水平(P < 0.03)。另一 方面,基于 *cytb* 的 BSP 结果表明,谱系 A、C 都呈现 出 3—5 万年以来的有效种群扩张,且谱系 C 的变化 幅度更大;用核基因片段 *ryr3*并未检测到近期的种群 扩张,但谱系 C 的总体瓶颈效应更为明显(图 5)。 **2.5** 竿虾虎鱼群体遗传组成时间上的稳定性

基于线粒体 mcr 基因片断对分别于 2013 年和 2015 年采自汇泉湾与石老人海水浴场的四个群体进 行群体遗传学分析,结果显示同一地理群体不同采 样年份的样本间 F_{ST} 值均较低(HQ2013-HQ2015,群 体间 $F_{ST} = -0.01, P > 0.05$; SLR2013-SLR2015,群体 间 $F_{ST} = 0.05, P > 0.05$)。如图 6 所示,采自汇泉湾和 石老人海水浴场的个体并未在所构建的 ML 树上分 出与年份对应的枝系,两个群体在同一年份的样本 都是分散的,且以遗传距离衡量其分枝长度在 1.5% 以内。此外,在混合这两个群体时,ML 树仍呈现出以 地理群体为主导的分枝结构,汇泉湾群体更多地处 于树的基部,而石老人群体更向顶端分枝集中(图 6,

- 图 4 竿虾虎鱼各谱系中国大群体(黑色)与日本大群体(白 色)的 *cytb* 单倍型网络图
- Fig.4 Haplotype network of *L. guttatus* lineage A and C based on *cytb* 注:数字和短划线代表不同单倍型间的核苷酸替换数目

左)。这一结果表明, 竿虾虎鱼具有较强的本地化栖息 习性, 群体内世代间的遗传分化较小, 整体遗传结构 主要受空间因素影响。

3 讨论

在我国和日本沿海, 竿虾虎鱼谱系 A、C 都存在 同域分布的情形, 而我国竿虾虎鱼谱系 A、C 的分布 比重改变于崂山西南侧的石老人与东侧的仰口之间。 崂山是我国海岸线上海拔最高的山峰, 第四纪冰川 在崂山(尤其东侧海岸)留有多处遗迹(Kusky *et al*, 2011)。且崂山附近海底地貌复杂、坡度较大, 以致夏 季表层水温在青岛沿海区域性急剧下降(王彬, 2010), 且东(北)风下的表层海流在崂山附近形成涡旋(王彬, 2010)。而根据近海遥感资料, 悬浮物浓度、叶绿素 *a* 浓度、硅氮比等生态指标都能在青岛近海沿南北方向 形成主要梯度(窦勇, 2012)。这些历史、地理和生态

1.E8 1 F8 *cytb* 谱系A rvr3 谱系A 1.E7 1.E7 ⊷ 1.E6 91.E6 1.E5 1.E5 1.E4 | 0 1.E4 0.05MYA 0.1MYA 0.15MYA 0.2MYA 0.25MYA 500 1000 1500 2000 2500 3000 3500 时间(年) 时间(百万年) 1.E8 1.E8 *cytb* 谱系C ryr3 谱系C 1.E7 1.E7 VeT ₩1.E6 1.E6 1.E5 1.E4 + 0 1.E5 + 0.05MYA 0.1MYA 0.15MYA 0.2MYA 0.25MYA 250000 500000 750000 1000000 1250000 时间(百万年) 时间(年)

图 5 基于 cytb 与 ryr3 基因片段构建的竿虾虎鱼 A、C 谱系的 BSP 图 Fig.5 Bayesian skyline plots of *L. guttatus* lineage A and C based on cytb and ryr3 注: Ne 为有效群体大小、T 为时间

背景可能是阻碍竿虾虎鱼谱系 A、C 在崂山附近海岸 相互渗透的重要原因。而根据 GenBank 上已有的竿 虾虎鱼线粒体 DNA 能够推断, 竿虾虎鱼谱系 A 在北 海道至本州岛南部沿海以及对马海峡西岸都有分布 (Yamada *et al*, 2009; Jeon *et al*, 2012), 本研究也进一 步佐证了这一海洋型谱系(Hashimoto *et al*, 2014)在我 国北方沿海相对于偏淡水型谱系 C 的广布性(没有来 自韩国沿海谱系 C 的分子信息)。谱系 B 已知分布于 西南日本沿海及琉球群岛, 在本研究中未能检测到。

竿虾虎鱼属内物种分类的混乱与各谱系形态的 趋同进化密不可分。本研究进一步证明,对隐存多样 性高的海洋鱼类物种(如:竿虾虎鱼),使用高多态性 的 DNA 标记(如:线粒体 DNA)可以得到比形态分类 更准确的系统发育关系。同时我们也看到,从线粒体 基因与核基因上分出的竿虾虎鱼谱系虽然能够对应 起来,但分支的顺序是不一致的。核基因 *ryr3* 编码一 种内质网上的钙离子通道蛋白,主要在神经系统中 表达(Nakashima *et al*, 1997);在高纬度沿海更大的年 温差下,谱系C可能具备更灵活的钙离子信号的调控 以促进对季节间温度变化的适应;而谱系间所受选 择压力的差异可能是竿虾虎鱼在核基因与线粒体 DNA 上呈现出系统发育模式差异的一个潜在因素。 另外,本研究只选用了一个核基因片段,所得结果可 能受到片段特异性选择压力的影响。为更加完整地阐 明竿虾虎鱼谱系间的遗传分化,后续工作中应选用 更多的核基因序列片段进行深入研究。

查明群体遗传组成的时空变化对于全面理解竿 虾虎鱼谱系内群体间遗传分化至关重要。虽然竿虾虎 鱼成体不适合长距离游泳,但其幼体浮游期一般为 20-35 天, 且随降温而增加, 这在其 1-2 年的生活 史中, 与多数洄游型鱼类相比所占的比例并不小 (Kitano et al, 2003); 加之其对海水、淡水环境均能迅 速适应,故竿虾虎鱼的幼体扩散能力可能要高于预 期。因此、竿虾虎鱼幼体可能在海流的作用下发生较 远的空间迁移、同一地理群体不同时间的补充群体 的遗传组成也可能存在差异。本研究结果表明、虽然 采样时间并不在同一年的同一季节、竿虾虎鱼谱系 内部群体的遗传组成在时间上仍具有稳定性。此 外、竿虾虎鱼各谱系内部的我国各群体间虽然存 在一定的遗传分化,但部分群体间可能由于幼体扩 散导致高水平的基因交流,其遗传分化未能达到显 著水平。

0.002

图 6 基于 mcr 基因片段的汇泉-石老人两群体(左)、石老人(右上)与汇泉(右下)单群体年际 ML 树 Fig.6 ML trees of *L. guttatus* sampled in different years from HQ-SLR (left), SLR (upper right) and HQ (lower right) based on mcr 注: HQ: 2013 年汇泉采样; SLR: 2013 年石老人采样; H: 2015 年汇泉采样; S: 2015 年石老人采样

本研究基于线粒体 DNA 的分析结果表明, 竿虾 虎鱼各谱系都经历了与末次冰期相关的有效种群扩 张(开始于约3—5万年前),以及开始于日本海南部海 域东岸的群体分化(开始时间更早,约10—30万年前): 其中谱系 C 的中日间群体分化早于谱系 A,且更可能 受到近 30万年来全球海平面涨落的影响(Lambeck *et al*, 2014)。本研究中的核基因片段多态性较低,且序 列较少,未能反映出末次冰期后的有效种群恢复,但 基于核基因 *ryr3*获得的 BSP 图进一步支持了谱系 C 在末次冰期前(约 12—30 万年前)有效种群数量趋于 减小,而谱系 A 并未体现出末次冰期前的瓶颈效应。 我们推断,偏北分布的谱系 C 在末次冰期初期可能经 受了更强的选择压力,而谱系 A 很有可能在间冰期 时随海侵扩散到青岛沿海。综观各标记的分析结果, 竿虾虎鱼可能是一个物种复合体(*L. guttatus agg.*): 其中谱系 B、C 起源于第四纪初期并在冰期发生纬向 隔离(谱系 B 可能是 *L. ryukyuensis* 的同种异名);谱系 A 起源于中新世末期并广泛分布于中间纬度,虽可 能与谱系 C 同域分布,但应该加以分子鉴别并单独 保护。

参考文献

- 王 彬, 2010. 地形对西南黄海环流的影响. 青岛: 中国科学 院海洋研究所硕士学位论文, 14—15
- 伍汉霖, 钟俊生. 2008. 中国动物志: 硬骨鱼纲、鲈形目(五)、 虾虎鱼亚目. 北京: 科学出版社, 484—486
- 窦 勇, 2012. 基于 RS、GIS 调查资料的青岛市海岸带生态系统健康评价. 青岛: 中国海洋大学博士学位论文, 133—142
- Avise J C, Walker D, 1999. Species realities and numbers in sexual vertebrates: Perspectives from an asexually transmitted genome. Proc Natl Acad Sci USA, 96(3): 992—995
- Chen J T F, 1932. Note sur un nouveau poisson chinois appartenant au genre *Luciogobius*. Bull Mus Natl Hist Nat Ser 2, 4: 648–650
- Cheng Y Z, Xu T J, Jin X X *et al*, 2012. Universal primers for amplification of the complete mitochondrial control region in marine fish species. Mol Biol, 46(5): 727–730
- Drummond A J, Suchard M A, Xie D *et al*, 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol, 29(8): 1969—1973
- Excoffier L, Lischer H E L, 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res, 10(3): 564—567
- Hashimoto S, Koizumi I, Takai K et al, 2014. Different habitat salinity between genetically divergent groups of a worm-like goby *Luciogobius guttatus*: an indication of cryptic species. Environ Biol Fish, 97(10): 1169—1177
- Hebert P D N, Cywinska A, Ball S L et al, 2003. Biological identifications through DNA barcodes. Proc Roy Soc B Biol Sci, 270(1512): 313—321
- Jeon H B, Choi S H, Suk H Y, 2012. Exploring the utility of partial cytochrome c oxidase subunit 1 for DNA barcoding of gobies. Anim Syst Evol Divers, 28(4): 269–278

- Kitano T, Hatakeyama R, Akiyama N et al, 2003. Relationship between annual reproductive cycle of female flat-head goby, *Luciogobius guttatus* and the seasonal change in water temperature in estuaries along the northern Suruga bay. Aquacult Sci, 51(1): 41—48
- Kusky T, Guo L, Xiang S B *et al*, 2011. A critical examination of evidence for a quaternary glaciation in Mt. Laoshan, eastern China. J Asian Earth Sci, 40(1): 403—416
- Lambeck K, Rouby H, Purcell A *et al*, 2014. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc Natl Acad Sci USA, 111(43): 15296–15303
- Librado P, Rozas J, 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11): 1451—1452
- Mukai T, Nishida M, 2004. Intraspecific mitochondrial DNA phylogeny of a Japanese brackish water goby, *Luciogobius guttatus*. Jpn J Ichthyol, 51(2): 157–161
- Nakashima Y, Nishimura S, Maeda A et al. 1997. Molecular cloning and characterization of a human brain ryanodine receptor. FEBS Lett, 417(1): 157–162
- Sambrook J, Fritsch E F, Maniatis T, 1989. Molecular Cloning: A Laboratory Manual. 2nd ed. Plainview, NY: Cold Spring Harbor Laboratory Press, 3: E3—E4
- Tamumra K, Peterson D, Peterson N et al, 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 28(10): 2731—2739
- Wang B, Li Y, Yuan D L, 2013. Effects of topography on the sub-tidal circulation in the southwestern Huanghai Sea (Yellow Sea) in summer. Acta Oceanol Sinica, 32(3): 1—9
- Yamada T, Sugiyama T, Tamaki N *et al*, 2009. Adaptive radiation of gobies in the interstitial habitats of gravel beaches accompanied by body elongation and excessive vertebral segmentation. BMC Evol Biol, 9: 145

CRYPTIC DIVERSITY AND DEMOGRAPHICAL HISTORY OF LUCIOGOBIUS GUTTATUS IN NORTHERN CHINA

DENG Ying-Da^{1, 2}, XUE Dong-Xiu^{1, 3}, LIU Jin-Xian^{1, 3}

 Key Laboratory of Ecology and Environment Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
University of Chinese Academy of Sciences, Beijing 100049, China;
Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China)

Abstract The flat-head goby, *Luciogobius guttatus*, Gobionellinae, is an intertidal dweller in stony coasts of East Asia. Previous researches have shown that there were three lineages (A, B, C) of *L. guttatus* in Japanese archipelago. Available studies in China only focused on *L. guttatus* morphological measuring works and survey records. We studied the cryptic diversity of their counterparts in northern China. Results show that the latitudinal distribution of lineage A (southern) and lineage C (northern) was affected by Laoshan Mountain in Qingdao, Shandong. The last glacial maximum (LGM) was Likely to be a key factor promoting the expansion, recovery, and divergence of the populations of *L. guttatus*. However, the responses to the LGM were different in each lineage. The study rendered the molecular basis for the conservation of *L. guttatus* on the coasts in northern China.

Key words mtDNA; nucDNA; cryptic diversity; Luciogobius guttatus; population divergence