胁迫条件下盐藻 *β*−胡萝卜素及其异构体

刘建国 赵学武; 王玉君 王作芸; 陈念洪 俞立东 吴以平; 吴超元

累积的研究——盐度的影响*

(中国科学院海洋研究所,青岛 266071) ([†]青岛海洋大学生物系,青岛 266003)

提要 于 1989—1991 年,在青岛室外以盐藻为实验材料,利用 Johnson 改良配方制作培养液,进行盐度(90—240)实验。结果表明,细胞生长的适宜盐度为 120;当盐度超过 120—240,盐度越高对细胞生长越不利,但越有利于细胞内 β -胡萝卜素的累积;适宜于养殖盐藻生产 β -胡萝卜素的盐度为 240。研究证明,盐藻累积的 β -胡萝卜素中至少含 6 种异构体,盐度增加不利于顺式异构体的累积。为生产防癌和延缓衰老等作用更强的顺式异构体,建议生产性养殖时适当降低盐度到 210,以便累积更多的 β -胡萝卜素及顺式异构体。

关键词 盐藻 β-胡萝卜素 异构体 胁迫 累积

单细胞盐藻是一种广盐性经济海藻,它是已知唯一能在接近淡水到饱和盐溶液中生长的真核生物(Ben-Amotz et al., 1983; Borowitzka, 1990)。前人研究结果表明,高盐度有利于 β -胡萝卜素的累积,但不利于细胞生长。究竟多大的盐度对 β -胡萝卜素累积和细胞生长相对都有利,从而使生产中获得最高 β -胡萝卜素产量,这是本研究需解决的第一个问题。近几年研究表明, β -胡萝卜素顺式异构体能猝灭生物体内化学活性很高的自由基,从而降低因自由基诱发的过氧化作用,具有延缓衰老和抵抗癌症的作用(Burton et al., 1984; Ibrahim et al., 1977; Peto et al., 1981)。目前盐度对盐藻 β -胡萝卜素异构体累积的研究尚属空白,为此本研究第二个目的是通过了解盐度对异构体累积的影响,找出适宜盐藻累积顺式异构体的盐度,以指导生产实践。

1 材料和方法

实验藻种——盐藻 ($Dunaliella\ salina$),系来自澳大利亚,并于1985—1990 进一步 筛选出的一种生长快、高产 β -胡萝卜素的品系 20。

1.1 盐藻培养方法 取天然净洁海水(盐度为 30),滤膜过滤后于 80℃ 消毒 5min,待冷至室温,加适量食盐调盐度于 90,每升溶液中加入以下化合物作为基本培养液: KNO,,0.2g; KH₂PO₄,27mg; NaHCO₃,1.0g; Na_{2EDTA},1.89mg; FeCl₃·6H₂O,2.44mg; H₃BO₃,0.61mg; ZnCl₂,41 μ g; (NH₄)₆ Mo₇O₂₄·4H₂O,0.38mg; CuSO₄·5H₂O,60 μ g; CoCl₂·

^{*}中国科学院海洋研究所调查研究报告第 2089 号。国家自然科学基金资助, 38970587 号;中国科学院海洋研究所海洋生物学开放研究实验室资助, A20893005 号;刘建国博士论文的一部分。

收稿日期: 1991年7月30日,接受日期: 1993年9月30日。

6H₂O, 51μg; MnCl₂·4H₂O, 41μg。pH 值用 HCl 或 NaOH 调节至 7.5 左右。

将处于对数生长期的藻种(其盐度为 90),加入基本培养液中,摇匀,均分 6 瓶,室外自然条件下培养。待细胞进入对数生长期时,调其盐度。为避免盐度突然变化导致藻体死亡,采用缓慢改变盐度的方法,即留 1 瓶,余者加食盐全部调到 120。 再留 1 瓶,其余第二天加食盐全部调到 150。 按上述方法依次将 6 瓶调盐藻溶液的盐度 到 90,120,150,180,210,240。培养 1 周后进行测定。

- 1.2 细胞计数 用血球计数板法进行细胞计数。
- 1.3 β -胡萝卜素的提取和测定 吸 10ml 藻液于离心管中,以 4 000r/min 转 速 离 心 5min。弃去上清液,加 10ml 80%的丙酮,用力反复摇匀,提取色素。再次离心 5min,吸上清液于 50ml 容量瓶中。按上述方法重复提取,至藻体白色。最后用蒸馏水定容至 50ml,用 751G 分光光度计测 450nm 光吸收,按下式计算 β -胡萝卜素含量¹⁰。

$$\beta$$
-胡萝卜素(mg/L) = $\frac{\text{O.D.}_{450} \cdot 稀释倍数}{2.500} \cdot \frac{10^3}{2.500}$

- 1.4 β-胡萝卜素异构体的分析
- 1.4.1 β -胡萝卜素的提取和萃取 取 70ml 藻液用离心机 以 4 000r/min 转 速 离 心 5 min。弃去上清液,将藻泥放入 100ml 三角烧瓶中,液态氮冰冻,置一20℃冰箱中保存。提取时加 20ml 80% 的无水丙酮于三角烧瓶中,用力摇匀倒入分液漏斗中。静止片刻,待分层后,将上层色素提取液置于 500ml 三角烧瓶中;下层液放回原三角烧瓶中。 按上述方法重复提取,直到藻体成白色。加 40ml 分析纯正己烷于色素液中,充分混合均匀;加少量蒸馏水,待正己烷丙酮液分层,以分液漏斗分离之。重新用正己烷萃取色素,直到丙酮液无色。于 30—35℃ 水浴条件下抽真空蒸于萃取液。如有水珠,通氮气吹于。
- **1.4.2** HPLC 层析柱前处理 碱性氧化铝 $(100-200\ E)$ 于 500° 煅 烧 4h,冷 却到 100° 迅速装瓶,置于干燥器中待用。上述氧化铝适量,湿法装柱 $(1\times 20\text{cm})$,以二氯甲烷为流动相,以 4ml/min 速度平衡 1h。加 5ml 二氯甲烷于干燥的色素中,充分溶解,取 1ml 小心地加在平衡好的层析柱上,续以二氯甲烷 (4ml/min) 洗脱。 β -胡萝卜素带移动较快,走在最前端,首先洗脱下来。 样品收集并定容至 10ml, 4° 保存。以 UV-240 型紫外分光光度计检测 300-700nm 的光吸收图谱,确定样品是否为 β -胡萝卜素及 有 无 杂质。
- **1.4.3** HPLC 分析 β -胡萝卜素液经超声波振荡脱气后,上 HPLC 分析。 所用仪器 为 Waters 系列高效液相色谱,色谱柱为 Alox-T(5 μ m,4 × 300mm), 流速为 1ml/min, 检测波长为 436nm, 流动相为正己烷:二氯甲烷 = 80:20。

以上操作均在避免高温、高湿度、强光照、低 pH 值条件下,并迅速完成。依据 HPLC 图谱,计算各峰所代表的异构体占 β -胡萝卜素的百分含量。

2 结果和讨论

2.1 盐度对生长和 β -胡萝卜素累积的影响 90—240 的盐度对细胞生长和 β -胡 萝卜素累积的影响(图 1) 表明,(1)细胞生长的适宜盐度为 120,盐度超过 120 后,盐度的提高

^{1) 1%}的 β-胡萝卜素色价为 2500。

不利于细胞生长。该结果比 Borowitzka 等 (1984;1987) 所得的适宜盐度 180—220 为低,但比 Avron 等 (1980)报道的适宜盐度 1.5 mol/L (\approx 88)为高。这可能是由于培养条件和藻种品系不一致造成的。盐度高不利于细胞生长的原因,可能有 4 方面的因素:第一,高盐度降低了 CO₂ 和 O₂ 的溶解度,由此导致代谢速度降低。第二,高盐度降低了某些酶或转运载体的活性。第三,高盐度影响细胞膜的正常功能。第四,细胞在维持渗透平衡中消耗一部分能量。(2)盐度超过 120,随盐度增加,细胞内 β -胡萝卜素含量迅速成倍增加。该结果同 Borowitzka 等 (1990),Loeblich (1982) 的结果完全一致。(3)若以单位水体计算,盐度越高, β -胡萝卜素含量越多,特别是盐度在 150—180 之间变化时, β -胡萝卜素累积变化幅度最大,同时该盐度也是决定养殖盐藻生产 β -胡萝卜素成败的关键盐度,即低于该盐度, β -胡萝卜素含量很少,高于该盐度,含量比较多。 盐度在 240 时 β -胡萝卜素含量最多,可以认为 240 的盐度是养殖盐藻生产 β -胡萝卜素的最适宜盐度。

我们认为,在开放式大面积养殖时,以选高盐度(>150)为适宜。在这种条件下,不仅 β -胡萝卜素累积得多,而且有害生物(如原生动物)的生长受到抑制。反之,较低的盐度虽有利于细胞生长,但 β -胡萝卜素累积的并不多;同时在该条件下有害生物如纤毛虫、变形虫和低产 β -胡萝卜素的盐藻品系,以及杂藻迅速繁殖,致使细胞数量比高盐度条件下反而低了。另外,自然条件下,经日光辐射水分蒸发,盐度逐渐上升,该过程对养殖盐藻生产 β -胡萝卜素十分有利。虽然由于降雨,盐度降低,但短期内细胞内 β -胡萝卜素量并不随之下降。因短期内雨水和高盐度培养液并不完全混合,二者之间发生分层现象,雨水在上,高盐度培养液在下,因而培养液盐度不会骤然下降,细胞不会死亡。

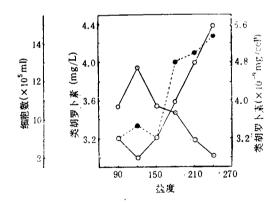
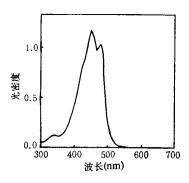



图 1 盐度对盐藻生长和β-胡萝卜素累积的影响

Fig. 1 Effect of salinity on cell growth and β-carotene accumulation in Dunaliella salina
— ○ — ○ 细胞生长; — ○ — ○ 细胞内类胡萝卜素量; — ● — ● 培养液内总类胡萝卜素量。

2.2 β -胡萝卜素及纯度的验证 进行 HPLC 分析的样品,经 UV-240 型紫外分光光度计检测,其吸收光谱见如图 2。在 300—700nm 的吸收光谱中,540—700nm 无吸收,说明样品中无叶绿素杂质;最大吸收峰顶在 448—450 和 474—478nm 之间,是 β -胡萝卜素的吸收峰特性;最大吸收向紫外偏移 1—2nm,表明盐藻 β -胡萝卜素中含有顺式异构体;340nm 处的吸收峰即为顺式异构体的特殊吸收峰(Goodwin,1976),进一步表明 顺 式异构体存在于盐藻 β -胡萝卜素中。

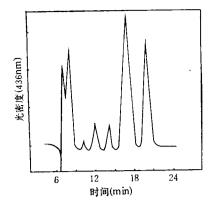


图 2 盐藻 β-胡萝卜素的吸收图谱 Fig. 2 Ultraviolet and visible light absorption spectra of β-carotene extracted from Dunaliella salina

图 3 盐藻 β-胡萝卜素异构体的 HPLC 图谱 Fig. 3 HPLC analysis spectrum of β-carotene extracted from Dunaliella salina

2.3 盐度对异构体累积的影响 经 HPLC 分析,盐藻至少累积 6 种 β -胡萝卜素异构体,其 HPLC 标准图谱见图 3。 1 号峰为 15-顺式异构体峰,5 号峰为全反式异构体峰,6 号峰为 9-顺式异构体峰¹⁰因为峰 5 代表的是全反式异构体,所以峰 0,2,3,4 代表的异构体分子中肯定含有一个或一个以上的顺式双键,因此尽管目前尚未弄清为何种异构体,但仍可推断为顺式异构体。

盐度对异构体累积的影响结果见表 1。可以看出,0 号顺式异构体随盐度的 提 高 由 无到有,由少到多;3 号、4 号二种顺式异构体基本上没有明显变化;15-顺式和 9-顺式异构体随盐度的提高而降低;全反式异构体随盐度的增加而增加;现知的 15-顺式、9-顺式和全反式异构体,是盐藻 β -胡萝卜素中含量比较多的 3 种异构体。 总之,提高盐度有利于全反式异构体的累积,而不利于总顺式异构体的累积。

表 1 盐度对盐藻异构体累积的影响

Tab. 1 Effect of salinity on accumulation of β-carotene isomers in Dunaliella salina

盐度	异 构 体 的 种 类						
	0 号	3 号	+ 号	15-顺式	9-顺式	总顺式	全反式
90	0.0	6.8	1.3	22.3	32.4	62.8	37.2
120	0.0	5.2	1.0	19.9	30.4	56.5	43.5
150	6.9	5.4	1.0	10.4	31.7	55.4	44.6
180	6.8	5.4	0.9	9.5	32.9	55.5	44.6
210	8.1	5.9	1.1	10.8	31.7	57.6	42.5
240	10.9	4.3	2.2	8.7	26.1	52.2	47.8

鉴于顺式异构体在防癌和延缓衰老等方面的作用更强,要使盐藻在累积大量 β-胡萝

^{1/3} 种 β-胡萝卜素异构体标准品分别由瑞典 F. Hoffman-La Roche AG 有限公司 Schüep 博士、Keller 博士,和以色列国家海洋研究所 Ben-Amotz 博士无偿提供,特此致谢。

卜素的同时,也累积更多的顺式异构体,为此建议生产性养殖时,控制盐度在 210 较为适宜。

3 结论

- **3.1** 细胞生长的适宜盐度在 120 左右;超过 120 时,盐度增加不利于细胞生长,但有利于细胞内 β -胡萝卜素的累积;特别是在 150—180 之间变化时, β -胡萝卜素累积变化幅度最大,该浓度也是决定养殖盐藻生产 β -胡萝卜素的成败关键;适宜于养殖盐藻生产 β -胡萝卜素的盐度以 240 为官。
- 3.2 盐藻累积的 β -胡萝卜素至少含 6 种异构体,其中含量较多的 3 种异 构 体 为 15-顺式、9-顺式和全反式;盐度增加不利于总顺式异构体的累积,而有利于全反式异构体的累积。 为使盐藻生长、 β -胡萝卜素及顺式异构体累积同时达到最好效果,建议生产性养殖时,控制盐度在 210。

 β -胡萝卜素是良好的食用色素,化妆品、防晒剂生产中的天然色素,在医药上可以用来治疗中风、心脏病、夜盲症、防治癌症、延缓衰老等。盐藻是累积 β -胡萝卜素最多的真核生物(达干重的 10% 左右),是最具开发潜力的 β -胡萝卜素天然资源;同时顺式异构体在盐藻 β -胡萝卜素中占多数(>50%),加强这方面的研究不仅在理论上,而且在实践中都是十分必要的。

参 考 文 献

- Avron, M., Ben-Amotz, A., Gen, R., 1980, Production of glycerol, carotenes and algae meal, United States Patent, No. 918808.
- Ben-Amotz, A., Avron, M., 1983, Accumulation of metabolites by halo-tolerant algae and its industrial potential, Ann. Rev. Microbiol., 37: 95-119.
- Borowitzka, L. J., Borowitzka, M. A., Moulton, T., 1984, Mass culture of *Dunaliella*: from laboratory to pilot plant, *Hydrobiologia*, **116/117**: 115-121.
- Borowitzka, M. A., 1987, Limits to growth and β-caroteneogenesis in lab. and large-scale outdoor cultural of *Dunaliella salina*, *In* Algal Biotechnology ed. by Stadler, et al., Elsevier Appl. Sci. (London and New York), pp. 371-381.
- Borowitzka, M. A., Borowitzka, L. J., 1990, Effect of salinity in crease on carotenoids accumulation in the green alga Dunaliella salina, J. Appl. Phycol., 2: 111-119.
- Borowitzka M. A., 1990, The mass culture of *Dunaliella salina*. Tech. Resource Paper Regional Workshop on the Culture and Utilization of Seafarming Development and Demostration Project RAS/90/002 27-31 August, 1990, Cebu, Philippine, pp. 63-80.
- Burton, G. W., Ingold, K. U., 1984, β -carorene: an unusual type of lipid antioxidation, Science, 224: 569-573.
- Goodwin, T. W., 1976, Chemistry and biochemistry of plant pigments, Academic Press (New York), pp. 209-219.
- lbrahim, K., Jafferey, N. A., Zuberi, S. J., 1977, Plasma vitamin A and carotene levels in squamous cell carcinoma of the oral cavity and oropharynx, Clin. Oncol., 3: 203-207.
- Loeblich, L. A., 1982, Photosynthesis and pigments influenced by light intensity and salinity in the halophilic D. salina (Chlorophyta), J. Mar. Biol. Ass. U. K., 62: 493-508.
- Peto, R. et al., 1981, Can dietary β-carotene material reduce human cancer rate? Nature, 290: 201-208.

STUDY ON ACCUMULATION OF β-CAROTENE AND ITS ISOMERS IN *DUN ALIELLA SALIN A* UNDER ENVIRONMENTAL STRESS CONDITIONS ——SALINITY EFFECT*

Liu Jianguo, Zhao Xuewu[†], Wang Yujun, Wang Zuoyun[†], Chen Nianhong, Yu Lidong, Wu Yiping[†], Wu Chaoyuan

(Institute of Oceanology, Academia Sinica, Qingdao 266071)

(†Department of Biology, Ocean University of Qingdao, Qingdao 266003)

ABSTRACT

The effect of salinity (S) on cell growth, accumulation of β -carotene and its isomers in Dunaliella salina Teodoresco strain 20 cultured outdoors in modified Johnson's medium of salinity 90—240 was conducted in 1989—1991 in Qingdao. The results showed that the S favourable for growth is 120 and that for β -carotene accumulation is 240. The isomers of β -carotene in D. salina cultured in different S were analysed by HPLC with an Alox-T alumina column. Six isomers of β -carotene were found in different proportions dependent on the S of the culture medium. All trans β -carotene increased from 37.2% to 47.8% when the S increased from 90 to 240, but both 9-cis and 15-cis β -carotene decreased from 32.4% and 22.3% to 26.1% and 8.7% respectively. Decrease of S led to more total cis β -carotene accumulation. Because cis isomers of β -carotene are good anti-senscence substances and can also provent certain kinds of cancer. Proper lowering of the S is suggested for more cis β -carotene production in Dunaliella cultivation.

Key words Dunaliella salina β -carotene Isomer Stress Accumulation

^{*} Contribution No. 2087 from the Institute of Oceanology, Academia Sinica.