首页 | 期刊简介 | 编委会 | 投稿指南 | 常用下载 | 联系我们 | 期刊订阅 | In English
引用本文:王思雯,杨洋,梁湘三,赵宇慧,王长友.东海黑潮上下游不同的涡动能季节变化特征及其产生机制.海洋与湖沼,2022,53(2):278-294.
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1126次   下载 684 本文二维码信息
码上扫一扫!
分享到: 微信 更多
东海黑潮上下游不同的涡动能季节变化特征及其产生机制
王思雯1, 杨洋1, 梁湘三2,3, 赵宇慧1, 王长友1
1.南京信息工程大学海洋科学学院 江苏南京 210044;2.复旦大学大气与海洋科学系以及大气科学研究院 上海 200438;3.上海期智研究院 上海 200232
摘要:
用一种新的泛函工具——多尺度子空间变换(multiscale window transform,MWT),得到如实的东海涡动能分布,发现东海黑潮上下游区域的涡动能有着完全不同的季节变化特征。根据功率谱分析,东海黑潮流系可正交地重构到背景流尺度子空间(大于64d)与涡旋尺度子空间(小于64d),并用MWT得出相应子空间的能量,后者即为涡动能。结果表明,上游涡动能在8月达到峰值,冬季最弱;而下游涡动能在4月和9月存在两个峰值,冬季最弱。利用基于MWT的正则传输理论以及局地多尺度能量分析方法,发现正压不稳定和斜压不稳定是东海黑潮涡动能的主要来源,且这两个来源决定了其上下游不同的季节变化。其中上游涡动能的季节变化主要受正压不稳定路径(即背景流动能向涡动能的正则传输)控制,而下游涡动能在4月的峰值主要由斜压不稳定路径(即背景流有效位能向涡旋有效位能作正则传输并进一步转化为涡动能)决定,其在9月的峰值受到正压不稳定和斜压不稳定的共同影响。
关键词:  黑潮  东海  多尺度子空间变换  正则传输  正压不稳定  斜压不稳定
DOI:10.11693/hyhz20211000236
分类号:P738
基金项目:国家自然科学基金项目,41975064号,41806023号;2015江苏双创团队项目;江苏省特聘教授项目。
附件
DISTINCTLY DIFFERENT SEASONAL EDDY KINETIC ENERGY VARIATIONS AND THEIR MECHANISMS IN THE UPSTREAM AND DOWNSTREAM KUROSHIO WITHIN THE EAST CHINA SEA SECTOR
WANG Si-Wen1, YANG Yang1, LIANG Xiang-San2,3, ZHAO Yu-Hui1, WANG Chang-You1
1.School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China;2.Department of Atmospheric and Oceanic Sciences, and Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China;3.Shanghai Qi Zhi Institute, Shanghai 200232, China
Abstract:
Application of a new functional analysis tool, i.e., multiscale window transform (MWT), reveals to us distinctly different seasonal variation patterns of the eddy kinetic energy (EKE) in the upstream and downstream of the Kuroshio in the East China Sea. Based on a power spectrum analysis, the fields are orthogonally reconstructed with MWT onto two scale windows, namely, the background flow window (> 64 d) and the eddy window (< 64 d). The kinetic energy on each window is obtained accordingly with the MWT transform coefficients. In the upstream, the EKE peaks in August, and reaches its minimum in winter; in contrast, the EKE downstream has two peaks, one in April and another in September, and attains its minimum in winter. Using the MWT-based canonical transfer theory and localized multiscale energetics analysis, we find that barotropic instability and baroclinic instability are the main mechanisms for the EKE variations in this region. They govern the different EKE seasonal cycles in upstream and downstream Kuroshio, respectively. In the upstream, the EKE seasonality is mainly generated through a barotropic instability pathway (i.e. the canonical transfer of kinetic energy from the background flow to the eddies). In contrast, in the downstream, the April peak is determined by a baroclinic instability (i.e. the canonical transfer of available potential energy from the background flow to the eddies, which is further converted to EKE), while the September peak is jointly generated by a baroclinic instability and a barotropic instability.
Key words:  Kuroshio  East China Sea  multiscale window transform  canonical transfer  barotropic instability  baroclinic instability
版权所有 海洋与湖沼 Oceanologia et Limnlolgia Sinica Copyright©2008 All Rights Reserved
主管单位:中国科协技术协会 主办单位:中国海洋湖沼学会
地址:青岛市海军路88号  邮编:266400  电话:0532-82898753  E-mail:ols@qdio.ac.cn
技术支持:北京勤云科技发展有限公司