静水压力变化对 NTC 热敏电阻器电学特性影响^{*}

刘遵京^{1,2,3,4} 王军华^{1,2,3} 汤新强^{1,2,3} 霍 鹏^{1,2,3,4}

刘 熠^{1, 2, 3, 4} 姚金城^{1, 2, 3} 常爱民^{1, 2, 3}

 (1. 中国科学院特殊环境功能材料与器件重点实验室 新疆乌鲁木齐 830000; 2. 新疆电子信息材料与器件重点实验室 新疆乌鲁木齐 830000; 3. 中国科学院新疆理化技术研究所 新疆乌鲁木齐 830000; 4. 中国科学院大学材料科学与光电技术学院 北京 100000)

摘要 负温度系数(negative temperature coefficient, NTC)热敏电阻器由于在窄温区内具有极高的 灵敏度,在海洋领域中有着广泛的应用,但深海应用中固有的高静水压力,对器件的测温准确度造 成不利影响。为了更好地认识这种现象,以珠状 NTC 热敏电阻器为研究对象,利用海洋环境高压模 拟装置,开展了静水压力作用对器件电学特性影响的研究,固定环境温度 25 °C 和 0 °C,压力范围 0~60 MPa,步长 5 MPa。结果显示,随着静水压力的增大,NTC 热敏电阻器的电阻值减小;环境温度 25 °C 和 0 °C 时,5~60 MPa 的静水压力造成的漂移分别为-0.11%~-2.81%、-0.19%~-2.78%,等效 于温度漂移分别为 0.024~0.624 °C、0.036~0.535 °C。这为热敏电阻器在深海温度准确测量的提升提 供了指引,有利于在海洋测温领域中更好的应用。

关键词 NTC 热敏电阻器; 深海温度; 高压模拟装置; 压力效应

中图分类号 P716 doi: 10.11693/hyhz20211100290

负温度系数(negative temperature coefficient, NTC) 热敏电阻器是一种对温度敏感的无源半导体, 电阻 值随温度升高而呈指数下降,具有坚固性强、可远程 测量、响应快、尺寸小、稳定性好、特别是在窄温区 范围内具有极高的灵敏度等优点、作为温度传感器 被广泛应用于海洋温度的测量(Feteira et al, 2010; Wang et al, 2019; Li et al, 2021)。海洋温度在海洋水 文要素中十分重要,海洋热含量的变化,海洋环流, 大气和地球表面温度等的变化都可由海洋温度评估 (Abraham et al, 2013), 因此对海洋温度进行准确测 量有着重要意义。据预测、全球海洋的平均温度变化 约 1.5 mK/a, 其中海平面至 700 m 变化约 8 mK (Wunsch, 2016), 对温度传感器的测量精度提出了高 要求。目前主流使用的温度传感器为海鸟电子公司 SBE 3 型温度传感器、其测量精度为1 mK、但海洋中 固有的高静水压力梯度(100 m/MPa)会对温度传感器 的温度示值造成不同程度的偏差、即温度传感器存 在压力效应(朱光文, 1983),随着压力的升高逐渐显 著,整体呈现线性关系。60 MPa(海洋深度 6 000 m 处 的压力值)造成最高约 4 mK 的测温偏差(Uchida *et al*, 2007; Peruzzi *et al*, 2017; Joung *et al*, 2020),在浅海应 用中通常将其忽略,但随着海洋技术的不断发展,深 海应用中要求的测量精度不断提高,压力效应的作 用愈发显著。因此,温度传感器压力效应的深入研究 十分必要。

温度传感器示值,由特定的阻温转换方程描述, 这与内部 NTC 热敏电阻器的电学特性直接相关。对 于热敏电阻器测温精度的研究已经进行了许多报道, 比如温度对稳定性的影响(Lawton *et al*, 2001, 2002; Dumcius *et al*, 2014)、工艺对灵敏度的影响(Kulkarni *et al*, 2015; Wang *et al*, 2020)、阻温转换方程对精度的 影响(Chen, 2009; Liu *et al*, 2018)等。但是静水压力对 热敏电阻器电学特性的影响却鲜有报道。海洋仪器 研究所指出,NTC 热敏电阻器在高静水压下其电学

 ^{*} 国家重点研发计划资助项目, 2019YFC1408603 号。刘遵京, 硕士研究生, E-mail: liuzunjing19@mails.ucas.ac.cn 通信作者:姚金城, 硕士生导师, 研究员, E-mail: yaojc@ms.xjb.ac.cn
 收稿日期: 2021-11-23, 收修改稿日期: 2021-12-28

性能会产生永久性变化(海洋仪器研究所二室温度 组,1978),但高静水压对器件的影响规律并没有详 细介绍。

本文通过在实验室中搭建的海洋环境高压模拟 器,模拟海洋的温度和静水压力梯度特性,研究了固 定环境温度、不同静水压力作用下玻璃珠状 NTC 热 敏电阻器的电学特性,希望为高精度的深海温度测 量提供依据,推动 NTC 热敏电阻器在海洋领域中应 用的最大化。

1 实验

1.1 实验器件

NTC 热敏电阻器的主要性能参数有材料常数 *B*、 电阻值漂移率 $\Delta R/R_0$ 、电阻温度系数 *a*。*B* 值描述温 度敏感度,一般为 2 000~5 000 K; $\Delta R/R_0$ 值表示器件 稳定性(Ma *et al*, 2014; Wang *et al*, 2021); α_T 值为温度 变化 1 °C,电阻值的变化率, 25 °C 时的电阻温度系数 α_{25} 通常为-2%/°C~-6%/°C (Feteira, 2009),可由公式 (1)进行计算、

$$\alpha_T = \frac{1}{R} \frac{\mathrm{d}R}{\mathrm{d}T} = \frac{B}{T^2},\tag{1}$$

其中, *R* 和 *B* 分别为绝对温度 *T* 下的电阻值和材料常数; d*R* 为温度变化 d*T* 下电阻值变化量。

Hoge-2 方程(Liu *et al*, 2018)是描述海洋应用 NTC 热敏电阻器电阻值与温度关系相对理想的拟合模型。 电阻值 *R_T*,获取温度 *T* 时,该方程形式为(Hoge, 1988)

$$\frac{1}{T} = A_0 + A_1 \ln R_T + A_2 (\ln R_T)^2 + A_3 (\ln R_T)^3, \qquad (2)$$

其中 A_0, A_1, A_2 和 A_3 为器件的拟合系数。

1

实验测试器件为美国 Amphenol Advanced Sensor P85 型 热 敏 电 阻 器, 25 °C 时 的 电 阻 温 度 系 数 $\alpha_0 \approx -5.2\%$ °C, $\alpha_{25} \approx -4.5\%$ °C, 其中一支设置为参考热敏 电阻器,其电阻值用 R_r 表示,主要参数值如表 1 所示。

表	1 参考热敏电阻器主要参数
Tab.1	Parameters of reference thermisto

$\alpha_0/(\%/^\circ C)$	<i>α</i> ₂₅ /(%/°C)	A_0	A_1	A_2	A_3
-5.2	-4.5	6.74×10^{-4}	2.69×10^{-4}	-4.08×10^{-6}	1.99×10 ⁻⁷

注: a_{25} 表示 25 °C 时的电阻温度系数; a_0 表示 0 °C 时的电阻温度 系数

1.2 实验装置

实验室中海洋环境高压模拟装置可划分为4个功 能模块(图1)。

图1 海洋环境高压模拟装置示意图

Fig.1 Schematic of high-pressure simulator for ocean environment

1.2.1 温度控制 湖州宇腾机电有限公司的 RTS 系列低温恒温槽,温度范围 263.15~323.15 K,稳定 性优于±0.01 K/30 min,均匀性优于±0.01 K,提供均 匀稳定的温度环境。

 1.2.2 数据采集 美国安捷伦科技有限公司的 34970A 数据采集器,测量精度: 读数×0.008%+量程 ×0.001%,固定时间间隔持续采集电阻值,计算机软件直接获取数据。

 1.2.3 压力控制 由江苏普斯特仪表科技有限公司的活塞式压力计与四川杰特机器有限公司的手动 试验泵组成,可最高产生的静水压力为 125 MPa,准 确度优于±0.02%。

1.2.4 压力容器 自主设计的压力容器提供一个 可承受高静水压力的测试环境,是由 316 不锈钢制成 的圆柱体,外径 155 mm,高 266 mm。其底部设计有 压力管接口与活塞压力计连通;顶部设计有相邻的 水密连接器与温度计阱,可实现无压条件下监测容 器内部环境温度的变化。

1.3 实验步骤

设置恒温油槽温度为测试温度点,水密连接器内 端采用两线法焊接测试器件,外端均采用四线法与 数据采集器焊接。参考热敏电阻器插入温度计阱的底 部,计算机软件控制(采集间隔为 5 s)实时同步采集 器件的电阻值,参考热敏电阻器的电阻值持续 10 min 的波动,压力容器内部温度达到相对稳定,将 系统压力提升至测试压力点。

25 °C 和 0 °C 温度点下,分别测试 0~60 MPa 逐步 升压、60~0 MPa 逐步降压,步长 5 MPa 的器件阻值。 25 °C 温度点下, 测试 0~60 MPa, 间隔 10 MPa, 直接由 0 MPa 升压到压力点, 然后直接泄压到 0 MPa 的器件阻值。

25 °C 温度点下,测试 0 MPa 直接升压到 60 MPa, 恒压 1 周后泄压到 0 MPa 的器件阻值。

2 结果与分析

2.1 升压过程

在 25 °C 下 20 MPa 升压至 25 MPa(其余升压过程 的变化曲线均相似)后测试器件 1 与参考器件电阻值 (*R*)随时间(*t*)的变化曲线(图 2)表明, *t*₀ 时刻升压后参 考器件和测试器件电阻值先迅速减小再逐渐增加, 整个压力作用过程可划分为 3 个阶段,升压前稳定阶 段 I、升压后初始阶段 II、升压后稳定阶段 III。

图 2 25 °C 下 20 MPa 升压至 25 MPa 后测试器件 1 与参 考器件电阻值随时间的变化曲线

Fig.2 Temporal variation in resistance value of test device 1 vs reference thermistor after being pressurized from 20 MPa to 25 MPa at 25 °C

注: I表示升压前稳定阶段; II表示升压后初始阶段; III表示升压后 稳定阶段; R 表示电阻值; t 表示时间; t₀表示升压时刻, t₁表示稳定 时刻

阶段 I, t₀时刻前, 电阻值保持动态平衡; 阶段 II, t₀~t₁时刻间, 电阻值迅速减小然后逐渐上升, 这是由 于不锈钢材料具有良好的绝热特性, 压力容器在短 时间内可等效为理想绝热容器, 升压过程符合热力 学定律中的绝热压缩, 升高压力所需的功转化为传 输液体内能, 压力容器中的温度迅速升高, 即压力传 输液存在压力效应(朱光文, 1983); 随后, 由于热交 换的存在, 温度缓慢下降。阶段 III, t₁时刻后, 电阻值 恢复至动态平衡。参考热敏电阻器的电阻值与测试器 件的电阻值, 存在延迟变化与幅度偏差等, 是因为恒 温油槽介质, 压力传输液和不锈钢材料的热阻导致的 传输延迟与热损耗等现象,因此,参考热敏电阻器可 以反应出测试样品的环境温度变化。

2.2 降压过程

图 3 所示为 25 °C 下 50 MPa 降压至 45 MPa(其余 降压过程的变化曲线均相似)后测试器件 1 与参考器 件电阻值(*R*)随时间(*t*)的变化曲线。由图 3 可知, *t*₂时 刻降压后参考热敏电阻器和测试器件电阻值先迅速 上升再逐渐下降,整个压力作用过程可划分为三个 阶段,降压前稳定阶段 I、降压后初始阶段 II、降压 后稳定阶段 III。

图 3 25 °C 下 50 MPa 降压至 45 MPa 后测试器件 1 与参 考器件电阻值随时间的变化曲线

Fig.3 Temporal variation in resistance of device 1 and reference thermistor after pressure drop from 50 to 45 MPa at 25 °C 注: t₂表示泄压时刻, t₃表示稳定时刻

阶段 I, t₂时刻前, 电阻值保持动态平衡; 阶段 II, t₂~t₃ 时刻间, 电阻值迅速增大然后逐渐减小, 这是由 于不锈钢材料具有良好的绝热特性, 压力容器在短 时间内可等效为理想绝热容器, 降压过程符合热力 学定律中的绝热膨胀, 传输液体的内能将作为压力 能释放, 压力容器中的温度迅速降低; 随后, 由于热 交换的存在, 温度缓慢上升。阶段 III, t₃时刻后, 电阻 值恢复至动态平衡。

2.3 电学特性

阶段 III 中, 连续选取至少 30 个电阻值点, 计算 其平均值为测试压力点下 NTC 热敏电阻器的电阻值; 不同测试压力下的环境温度, 由参考热敏电阻器的 电阻值通过公式(2)转换。

25 °C 下不同测试压力中器件的电阻值与环境温 度差(表 2)显示,随着测试压力逐步增大,测试器件 的电阻值逐渐降低;而测试压力逐步减小时,测试器 件的电阻值逐渐升高。但参考器件的电阻值却呈现波

表 2 25 °C 下不同测试压力中器件的电阻值与环境温度差 Tab.2 The resistance of devices and environmental temperature difference under different pressures at 25 °C

压力	R_1	R_2	R_3	R_4	$R_{\rm r}$	ΔT
/MPa	/KS2	/KS2	/KS2	/K12	/КС2	/mK
0	45.271	46.978	50.157	48.885	49.220	0.000
5	45.192	46.869	50.098	48.849	49.243	-10.590
10	45.073	46.738	50.014	48.765	49.246	-12.150
15	44.930	46.570	49.898	48.645	49.223	-1.770
20	44.831	46.449	49.818	48.564	49.224	-1.790
25	44.710	46.323	49.726	48.465	49.222	-1.290
30	44.586	46.193	49.627	48.350	49.206	6.220
35	44.503	46.105	49.555	48.288	49.219	0.100
40	44.425	46.026	49.504	48.211	49.224	-1.850
45	44.295	45.884	49.374	48.098	49.198	9.630
50	44.254	45.838	49.344	48.060	49.228	-3.820
55	44.203	45.778	49.301	48.009	49.234	-6.420
60	44.125	45.680	49.227	47.941	49.241	-9.710
55*	44.210	45.769	49.317	48.017	49.256	-16.480
50^{*}	44.248	45.806	49.354	48.050	49.248	-13.020
45 [*]	44.313	45.863	49.412	48.119	49.247	-12.520
40^{*}	44.381	45.936	49.483	48.188	49.247	-12.210
35*	44.485	46.040	49.571	48.272	49.266	-21.150
30^{*}	44.562	46.113	49.639	48.338	49.242	-10.330
25*	44.662	46.219	49.720	48.422	49.247	-12.290
20^{*}	44.762	46.310	49.781	48.491	49.222	-1.210
15*	44.904	46.469	49.897	48.615	49.245	-11.610
10^{*}	45.031	46.617	49.991	48.729	49.259	-17.630
5*	45.172	46.788	50.082	48.826	49.250	-13.620
0^{*}	45.282	46.939	50.163	48.904	49.237	-8.060

注: *表示降压值; *R*₁, *R*₂, *R*₃, *R*₄ 分别表示不同器件的电阻值; *R*_r 为参考器件电阻值; Δ*T* 为环境温度差

动,转换为环境温度后波动范围为-21.15~9.63 mK。 这表明在不同的测试压力中,测试器件的电阻值由 于环境温度的波动而存在偏差,为尽可能提高测试 精度,需对测试器件的电阻值进行校正。同一器件, 修正后的电阻值 *R_p*'由公式(3)计算,

$$R_p' = R_p + \alpha R_0 \Delta T_p, \tag{3}$$

其中, R_p 和 ΔT_p 分别为测试压力为 p 时的电阻值、相 对于无压的环境温度偏差量; α 为电阻温度系数; R_0 为无压下器件的电阻值。

修正后 25 °C 下不同测试压力中器件的电阻值与 漂移率(表 3)显示,当测试压力逐步增大时,测试器 件的电阻值逐渐降低;而测试压力逐步减小时,测试 器件的电阻值逐渐升高;表明 25 °C 下静水压力造成 的器件温度漂移高于环境温度偏差。60 MPa 下电阻 值 的 漂移 率 为-1.82%~-2.81%,等效于温度偏差 0.404~0.624 °C; 5 MPa 下电阻值的漂移率为-0.11%~ -0.28%, 温度偏差为 0.024~0.062 °C。相同测试压力 下阻值漂移率的绝对值,降压均比升压高;泄压后, 电阻值均表现出不同程度的漂移;说明静水压力会 对器件造成永久性变化。

表 3 修正后 25 ℃ 下不同测试压力中器件的电阻值与漂 移率

1 ab.3	Resistance of devices and drift rate under different
	pressures at 25°C after correction

压力 /MPa	$R_1'/k\Omega$	R_2' /k Ω	$R_{3}'/k\Omega$	$R_4'/k\Omega$	$R_{1}'/_{0}$	R_{2}'	R_{3}'	$R_4' / \%$
0	45.271	46.978	50.157	48.885	0.000	0.000	0.000	0.000
5	45.171	46.847	50.074	48.825	-0.220	-0.280	-0.170	-0.120
10	45.048	46.712	49.986	48.738	-0.490	-0.570	-0.340	-0.300
15	44.927	46.566	49.894	48.641	-0.760	-0.880	-0.520	-0.500
20	44.828	46.445	49.814	48.560	-0.980	-1.130	-0.680	-0.670
25	44.708	46.320	49.723	48.462	-1.240	-1.400	-0.860	-0.860
30	44.599	46.206	49.641	48.364	-1.490	-1.640	-1.030	-1.070
35	44.503	46.105	49.555	48.289	-1.700	-1.860	-1.200	-1.220
40	44.421	46.023	49.500	48.207	-1.880	-2.030	-1.310	-1.390
45	44.314	45.905	49.395	48.119	-2.110	-2.280	-1.520	-1.570
50	44.246	45.830	49.335	48.052	-2.260	-2.440	-1.640	-1.700
55	44.190	45.765	49.287	47.995	-2.390	-2.580	-1.730	-1.820
60	44.105	45.659	49.205	47.919	-2.580	-2.810	-1.900	-1.980
55*	44.176	45.734	49.280	47.980	-2.420	-2.650	-1.750	-1.850
50^*	44.221	45.778	49.324	48.021	-2.320	-2.550	-1.660	-1.770
45*	44.287	45.837	49.384	48.091	-2.170	-2.430	-1.540	-1.620
40^{*}	44.356	45.910	49.456	48.161	-2.020	-2.270	-1.400	-1.480
35*	44.442	45.995	49.523	48.226	-1.830	-2.090	-1.260	-1.350
30*	44.540	46.092	49.616	48.315	-1.610	-1.890	-1.080	-1.170
25^{*}	44.637	46.193	49.692	48.395	-1.400	-1.670	-0.930	-1.000
20^{*}	44.760	46.307	49.779	48.488	-1.130	-1.430	-0.750	-0.810
15*	44.881	46.444	49.871	48.589	-0.860	-1.140	-0.570	-0.600
10^*	44.996	46.580	49.951	48.691	-0.610	-0.850	-0.410	-0.400
5*	45.144	46.759	50.051	48.796	-0.280	-0.470	-0.210	-0.180
0^*	45.266	46.922	50.144	48.886	-0.010	-0.120	-0.020	0.000

注: *表示降压值; R₁', R₂', R₃', R₄'分别表示修正后不同器件的电 阻值

表4所示为0°C下不同测试压力中器件的电阻值 与环境温度差。可以看到,测试器件的电阻值随着测 试压力的逐步增大而逐渐降低,随测试压力的逐步 减小而逐渐升高。参考器件的电阻值呈现波动,转换 为环境温度后波动范围为-17.15~49.02 mK。

表5所示为修正后0°C下不同测试压力中器件的 电阻值与漂移率。由表5可知,测试器件的电阻值仍 然随测试压力的逐步增大而逐渐降低,随测试压力

Tab.	4 Resistance of de	evices and environm	iental temperature d	ifference under diff	erent pressures at 0	°C
压力/MPa	$R_1/\mathrm{k}\Omega$	$R_2/\mathrm{k}\Omega$	$R_3/\mathrm{k}\Omega$	$R_4/{ m k}\Omega$	$R_{ m r}/{ m k}\Omega$	$\Delta T/mK$
0	152.828	158.184	169.463	165.553	166.490	0.000
5	152.004	157.178	168.566	165.031	166.065	49.020
10	151.768	156.956	168.497	164.919	166.245	28.160
15	151.384	156.549	168.196	164.601	166.233	29.540
20	150.792	155.896	167.716	164.121	166.165	37.420
25	150.470	155.582	167.474	163.865	166.177	36.030
30	150.182	155.287	167.230	163.593	166.210	32.260
35	149.822	154.925	166.945	163.291	166.238	29.030
40	149.440	154.566	166.659	162.926	166.189	34.640
45	149.239	154.356	166.467	162.697	166.243	28.450
50	148.965	154.097	166.213	162.458	166.275	24.710
55	148.644	153.761	165.893	162.133	166.186	34.990
60	148.410	153.514	165.675	161.900	166.207	32.640
55*	148.969	154.105	166.280	162.400	166.507	-2.010
50^{*}	149.181	154.296	166.503	162.616	166.473	2.000
45 [*]	149.416	154.531	166.746	162.837	166.516	-2.960
40^{*}	149.787	154.908	167.115	163.223	166.639	-17.150
35*	149.960	155.032	167.196	163.326	166.479	1.320
30*	150.340	155.415	167.573	163.693	166.532	-4.880
25*	150.659	155.733	167.834	163.935	166.532	-4.840
20^{*}	150.999	156.038	168.085	164.190	166.488	0.260
15*	151.136	156.223	168.119	164.281	166.255	27.050
10^{*}	151.698	156.804	168.574	164.786	166.376	13.070
5*	152.199	157.382	168.944	165.175	166.419	8.220
0^*	152.649	157.888	169.244	165.429	166.327	18.710

表4 0°C下不同测试压力中器件的电阻值与环境温度差

注:*表示降压值

表 5 修正后 0 °C 下不同测试压力中器件的电阻值与漂移率 Tab.5 Resistance of devices and drift rate under different pressures at 0°C after correction

压力/MPa	$R_1'/\mathrm{k}\Omega$	$R_2'/\mathrm{k}\Omega$	$R_3'/\mathrm{k}\Omega$	$R_4'/\mathrm{k}\Omega$	$R_1'/\%$	R2′/%	<i>R</i> ₃ ′/%	R4′/%
0	152.828	158.184	169.463	165.553	0.000	0.000	0.000	0.000
5	152.395	157.583	168.999	165.454	-0.280	-0.380	-0.270	-0.060
10	151.992	157.189	168.746	165.162	-0.550	-0.630	-0.420	-0.240
15	151.619	156.792	168.457	164.856	-0.790	-0.880	-0.590	-0.420
20	151.090	156.205	168.046	164.444	-1.140	-1.250	-0.840	-0.670
25	150.757	155.879	167.792	164.176	-1.350	-1.460	-0.990	-0.830
30	150.439	155.553	167.515	163.872	-1.560	-1.660	-1.150	-1.020
35	150.053	155.164	167.202	163.541	-1.820	-1.910	-1.330	-1.210
40	149.716	154.851	166.965	163.225	-2.040	-2.110	-1.470	-1.410
45	149.466	154.591	166.718	162.942	-2.200	-2.270	-1.620	-1.580
50	149.162	154.300	166.431	162.672	-2.400	-2.450	-1.790	-1.740
55	148.923	154.050	166.202	162.435	-2.560	-2.610	-1.920	-1.880
60	148.670	153.783	165.963	162.182	-2.720	-2.780	-2.060	-2.040
55*	148.953	154.089	166.262	162.383	-2.530	-2.590	-1.890	-1.910
50^{*}	149.197	154.313	166.520	162.633	-2.380	-2.450	-1.740	-1.760
45*	149.393	154.507	166.720	162.811	-2.250	-2.320	-1.620	-1.660

海洋与湖沼

								续表
压力/MPa	$R_1'/\mathrm{k}\Omega$	$R_2'/\mathrm{k}\Omega$	$R_3'/\mathrm{k}\Omega$	$R_4'/\mathrm{k}\Omega$	<i>R</i> ₁ ′/%	$R_2'/\%$	R3'/%	R_4' /%
40^{*}	149.650	154.767	166.963	163.075	-2.080	-2.160	-1.470	-1.500
35*	149.971	155.043	167.207	163.338	-1.870	-1.990	-1.330	-1.340
30*	150.301	155.375	167.530	163.651	-1.650	-1.780	-1.140	-1.150
25*	150.620	155.694	167.792	163.893	-1.440	-1.570	-0.990	-1.000
20^{*}	151.001	156.040	168.088	164.192	-1.200	-1.360	-0.810	-0.820
15*	151.351	156.446	168.358	164.514	-0.970	-1.100	-0.650	-0.630
10^{*}	151.802	156.912	168.689	164.899	-0.670	-0.800	-0.460	-0.390
5*	152.264	157.450	169.016	165.246	-0.370	-0.460	-0.260	-0.190
0^*	152.798	158.042	169.410	165.591	-0.020	-0.090	-0.030	-0.020

注:*表示降压值

的逐步减小而逐渐升高;表明 0 °C 下静水压力造成 的器件温度漂移也高于环境温度偏差。60 MPa 下电 阻值的漂移率为-2.06%~-2.78%,等效于温度偏差 0.396~0.535 °C;5 MPa 下电阻值漂移率为-0.19%~ -0.38%,温度偏差 0.036~0.073 °C。相同测试压力下 阻值漂移率的绝对值,绝大部分降压相比升压高;泄 压后, 电阻值均表现出不同程度的漂移; 说明静水压 力对器件造成永久性变化并不是绝对的。

表 6 所示为不同压力梯度下 NTC 热敏电阻器的 测温偏差。可以看到,不同温度下的测温偏差,都随 着压力梯度的增大,呈现减小的趋势。同等条件下, 不同器件的测温偏差存在较大差异。

表 6 不同压力梯度下 NTC 热敏电阻器的测温偏差

Tab.6 The	bias of temperat	ure measurement	of NTC	thermistor	under diffe	erent pressure	gradients
-----------	------------------	-----------------	--------	------------	-------------	----------------	-----------

压力范围/MPa	$R_{1}'/(m)$	$R_1'/(\mathrm{mK/MPa})$		K/MPa)	<i>R</i> ₃ ′/(m	K/MPa)	<i>R</i> ₄ ′/(mK/MPa)	
	25 °C	0 °C	25 °C	0 °C	25 °C	0 °C	25 °C	0 °C
0~5	10.020	10.970	12.520	14.670	7.360	10.480	5.420	2.290
5~10	12.200	10.250	12.900	9.660	7.740	5.730	7.960	6.750
10~15	12.170	9.500	14.020	9.740	8.190	6.550	8.870	7.110
15~20	9.940	13.560	11.640	14.490	7.170	9.350	7.490	9.610
20~25	12.100	8.540	12.140	8.040	8.080	5.800	8.940	6.260
25~30	11.020	8.190	10.990	8.090	7.390	6.320	9.090	7.120
30~35	9.660	9.950	9.880	9.660	7.700	7.170	6.940	7.750
35~40	8.320	8.730	8.030	7.800	4.960	5.420	7.520	7.440
40~45	10.870	6.470	11.520	6.510	9.390	5.670	8.160	6.650
45~50	6.960	7.900	7.300	7.270	5.400	6.600	6.270	6.380
50~55	5.670	6.240	6.400	6.280	4.390	5.280	5.270	5.600
55~60	8.730	6.580	10.360	6.700	7.360	5.500	7.070	5.990
60~55*	-7.270	-7.380	-7.380	-7.680	-6.710	-6.900	-5.700	-4.760
$55^* \sim 50^*$	-4.590	-6.330	-4.310	-5.610	-4.040	-5.950	-3.800	-5.910
$50^{*} \sim 45^{*}$	-6.790	-5.090	-5.720	-4.870	-5.400	-4.580	-6.500	-4.210
$45^* \sim 40^*$	-7.000	-6.680	-7.180	-6.500	-6.440	-5.590	-6.470	-6.200
$40^{*} \sim 35^{*}$	-8.720	-8.300	-8.320	-6.880	-6.080	-5.590	-6.010	-6.190
35 [*] ~30 [*]	-9.980	-8.530	-9.400	-8.270	-8.290	-7.380	-8.220	-7.360
30*~25*	-9.780	-8.230	-9.870	-7.910	-6.830	-5.970	-7.360	-5.670
$25^* \sim 20^*$	-12.340	-9.780	-11.050	-8.580	-7.750	-6.740	-8.650	-6.990
$20^* \sim 15^*$	-12.180	-8.990	-13.290	-10.040	-8.210	-6.160	-9.260	-7.520
$15^* \sim 10^*$	-11.520	-11.520	-13.040	-11.480	-7.130	-7.510	-9.290	-8.960
10*~5*	-14.830	-11.770	-17.230	-13.200	-8.900	-7.410	-9.610	-8.060
$5^* \sim 0^*$	-12.140	-13.540	-15.560	-14.480	-8.270	-8.890	-8.230	-8.000

注:*表示降压值

表 7 所示为 25 °C 下直接升泄压的不同测试压力 中器件的电阻值与环境温度差。可以看到,参考热敏 电阻器电阻值呈现波动,转换为环境温度后波动范 围为-65.03~1.48 mK。

表 7 25 ℃ 下直接升泄压的不同测试压力中器件的电阻 值与环境温度差

Tab.7 Resistance of devices and environmental temperature difference under different pressures in direct pressure rise and release at 25 °C

压力/MPa	$R_1/k\Omega$	$R_2/k\Omega$	$R_3/k\Omega$	$R_{4/k}\Omega$	$R_{\rm r}/{ m k}\Omega$	$\Delta T/mK$
0	45.277	47.028	50.157	48.904	49.222	0
10	45.106	46.779	50.040	48.789	49.254	-14.490
0^{*}	45.271	46.978	50.157	48.885	49.220	1.190
20	44.806	46.397	49.796	48.541	49.206	1.480
0^{*}	45.258	46.911	50.141	48.876	49.219	1.480
30	44.735	46.320	49.797	48.511	49.364	-63.860
0^{*}	45.357	47.003	50.264	48.987	49.356	-60.260
40	44.461	46.037	49.551	48.267	49.304	-37.100
0^{*}	45.360	46.999	50.263	48.992	49.357	-61.090
50	44.359	45.933	49.469	48.179	49.363	-63.590
0^{*}	45.350	46.996	50.255	48.978	49.366	-65.030
60	44.249	45.807	49.359	48.075	49.349	-57.260
0^{*}	45.345	46.985	50.246	48.979	49.355	-59.750

注:*表示降压值 (the depressurization value)

表 8 所示为修正后 25 °C 下直接升泄压的不同测 试压力中器件的电阻值与漂移率。可以看到,每次

表 8 修正后 25 °C 下直接升泄压的不同测试压力中器件 的电阻值与漂移率

Tab.8 The corrected resistance value and drift rate of devices under different pressures for direct pressure rise and relief at $25 \text{ }^{\circ}\text{C}$

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	压力 /MPa	$R_1/k\Omega$	$R_2/k\Omega$	$R_3/k\Omega$	$R_4/\mathrm{k}\Omega$	$R_1/\%$	<i>R</i> ₂ /%	<i>R</i> ₃ /%	<i>R</i> ₄ /%
10 $45.077 \ 46.748 \ 50.007 \ 48.757 \ -0.440 \ -0.600 \ -0.300 \ -0.300$ 0* $45.242 \ 46.947 \ 50.124 \ 48.887 \ -0.080 \ -0.170 \ -0.070 \ -0.030$ 20 $44.777 \ 46.367 \ 49.763 \ 48.544 \ -1.100 \ -1.410 \ -0.790 \ -0.730$ 0* $45.228 \ 46.881 \ 50.109 \ 48.880 \ -0.110 \ -0.310 \ -0.100 \ -0.050$ 30 $44.705 \ 46.289 \ 49.764 \ 48.371 \ -1.260 \ -1.570 \ -0.780 \ -1.090$ 0* $45.328 \ 46.972 \ 50.231 \ 48.854 \ 0.110 \ -0.120 \ -0.150 \ -0.100$ 44.432 $46.007 \ 49.518 \ 48.186 \ -1.870 \ -2.170 \ -1.270 \ -1.470$ 0* $45.331 \ 46.969 \ 50.230 \ 48.857 \ 0.120 \ -0.130 \ -0.150 \ -0.090$ 50 $44.330 \ 45.903 \ 49.437 \ 48.039 \ -2.090 \ -2.390 \ -1.440 \ -1.770$ 0* $45.321 \ 46.966 \ 50.223 \ 48.835 \ 0.100 \ -0.130 \ -0.130 \ -0.140$ 60 $44.219 \ 45.777 \ 49.327 \ 47.951 \ -2.340 \ -2.660 \ -1.660 \ -1.950$ 0* $45.316 \ 46.955 \ 50.214 \ 48.849 \ 0.090 \ -0.160 \ -0.110 \ -0.110$	0	45.277	47.028	50.157	48.904	0.000	0.000	0.000	0.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	45.077	46.748	50.007	48.757	-0.440	-0.600	-0.300	-0.300
20 $44.777 \ 46.367 \ 49.763 \ 48.544 \ -1.100 \ -1.410 \ -0.790 \ -0.730$ 0* $45.228 \ 46.881 \ 50.109 \ 48.880 \ -0.110 \ -0.310 \ -0.100 \ -0.050$ 30 $44.705 \ 46.289 \ 49.764 \ 48.371 \ -1.260 \ -1.570 \ -0.780 \ -1.090$ 0* $45.328 \ 46.972 \ 50.231 \ 48.854 \ 0.110 \ -0.120 \ -0.150 \ -0.100$ 40 $44.432 \ 46.007 \ 49.518 \ 48.186 \ -1.870 \ -2.170 \ -1.270 \ -1.470$ 0* $45.331 \ 46.969 \ 50.230 \ 48.857 \ 0.120 \ -0.130 \ -0.150 \ -0.090$ 50 $44.330 \ 45.903 \ 49.437 \ 48.039 \ -2.090 \ -2.390 \ -1.440 \ -1.770$ 0* $45.321 \ 46.966 \ 50.223 \ 48.835 \ 0.100 \ -0.130 \ -0.130 \ -0.140$ 60 $44.219 \ 45.777 \ 49.327 \ 47.951 \ -2.340 \ -2.660 \ -1.660 \ -1.950$ 0* $45.316 \ 46.955 \ 50.214 \ 48.849 \ 0.090 \ -0.160 \ -0.110 \ -0.110$	0^{*}	45.242	46.947	50.124	48.887	-0.080	-0.170	-0.070	-0.030
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	20	44.777	46.367	49.763	48.544	-1.100	-1.410	-0.790	-0.730
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0^{*}	45.228	46.881	50.109	48.880	-0.110	-0.310	-0.100	-0.050
0* 45.328 46.972 50.231 48.854 0.110 -0.120 -0.150 -0.100 40 44.432 46.007 49.518 48.186 -1.870 -2.170 -1.270 -1.470 0* 45.331 46.969 50.230 48.857 0.120 -0.130 -0.150 -0.090 50 44.330 45.903 49.437 48.039 -2.090 -2.390 -1.440 -1.770 0* 45.321 46.966 50.223 48.835 0.100 -0.130 -0.130 -0.140 60 44.219 45.777 49.327 47.951 -2.340 -2.660 -1.660 -1.950 0* 45.316 46.955 50.214 48.849 0.090 -0.160 -0.110 -0.110	30	44.705	46.289	49.764	48.371	-1.260	-1.570	-0.780	-1.090
40 44.432 46.007 49.518 48.186 -1.870 -2.170 -1.270 -1.470 0* 45.331 46.969 50.230 48.857 0.120 -0.130 -0.150 -0.090 50 44.330 45.903 49.437 48.039 -2.090 -2.390 -1.440 -1.770 0* 45.321 46.966 50.223 48.835 0.100 -0.130 -0.130 -0.140 60 44.219 45.777 49.327 47.951 -2.340 -2.660 -1.660 -1.950 0* 45.316 46.955 50.214 48.849 0.090 -0.160 -0.110 -0.110	0^{*}	45.328	46.972	50.231	48.854	0.110	-0.120	-0.150	-0.100
0* 45.331 46.969 50.230 48.857 0.120 -0.130 -0.150 -0.090 50 44.330 45.903 49.437 48.039 -2.090 -2.390 -1.440 -1.770 0* 45.321 46.966 50.223 48.835 0.100 -0.130 -0.130 -0.140 60 44.219 45.777 49.327 47.951 -2.340 -2.660 -1.660 -1.950 0* 45.316 46.955 50.214 48.849 0.090 -0.160 -0.110 -0.110	40	44.432	46.007	49.518	48.186	-1.870	-2.170	-1.270	-1.470
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0^{*}	45.331	46.969	50.230	48.857	0.120	-0.130	-0.150	-0.090
0* 45.321 46.966 50.223 48.835 0.100 -0.130 -0.130 -0.140 60 44.219 45.777 49.327 47.951 -2.340 -2.660 -1.660 -1.950 0* 45.316 46.955 50.214 48.849 0.090 -0.160 -0.110 -0.110	50	44.330	45.903	49.437	48.039	-2.090	-2.390	-1.440	-1.770
60 44.219 45.777 49.327 47.951 -2.340 -2.660 -1.660 -1.950 0* 45.316 46.955 50.214 48.849 0.090 -0.160 -0.110 -0.110	0^{*}	45.321	46.966	50.223	48.835	0.100	-0.130	-0.130	-0.140
0* 45.316 46.955 50.214 48.849 0.090 -0.160 -0.110 -0.110	60	44.219	45.777	49.327	47.951	-2.340	-2.660	-1.660	-1.950
	0^{*}	45.316	46.955	50.214	48.849	0.090	-0.160	-0.110	-0.110

注:*表示降压值

0 MPa 升压到测试压力点,器件阻值都会减小;压力 测试点泄压至 0 MPa 后,器件阻值都会增大;不同的 测试压力点,器件的阻值随着压力值的增大而减小。 漂移率相比步进升降压的变压方式相差约 0.1%。因 此,变压方式对测试结果的影响不显著。

表 9 为 NTC 热敏电阻器在 60 MPa 稳压一周 (168 h)前后的电阻值与漂移率。可以看到, 压力作用 前后电阻值产生了 0.02%~0.03%的正向偏移。

表 9 NTC 热敏电阻器在 60 MPa 稳压一周(168 h)前后的 电阻值(单位: Ω)与漂移率(单位: %)

Tab.9 Resistance and drift rate of NTC thermistor before and after one week (168 hours) of constant pressure at 60 MPa

器件 编号	升压前	泄压后	升压前 修正	泄压后 修正	漂移率/%
1	45 265.700	45 237.550	45 265.690	45 275.480	0.020
2	46 912.050	46 884.530	46 912.040	46 923.840	0.030
3	50 152.200	50 118.860	50 152.200	50 160.800	0.020
4	48 881.180	48 855.310	48 881.170	48 896.270	0.030
5	49 220.710	49 179.540	49 220.700	49 220.780	0.000

注:5 为参考器件

针对上述现象,可能是高静水压影响了器件内部 陶瓷的相结构。由于高压会对陶瓷相变产生非常显著 的变化(Hachiga *et al*, 1986, 1987),即使 NTC 陶瓷热 敏电阻的陶瓷敏感体经由玻璃封装保护,高静水压 力仍然会对陶瓷产生影响,相的微变造成了电阻值 的漂移现象。

3 结论

分别测试了 25 °C 和 0 °C 恒温环境下, 0~60 MPa, 步长 5 MPa 的静水压力与 NTC 热敏电阻器电阻值的 变化关系。初步研究表明: NTC 热敏电阻器的电阻值 随压力的增大而减小、不同压力变化方式之间产生 约0.1%的偏差;在25°C和0°C温度点,60 MPa下电 阻值的漂移率分别为-1.82%~-2.81%、-2.06%~-2.78%、 转换为温度后测温偏差分别为 0.404~0.624 °C、 0.396~0.535 °C, 5 MPa 下电阻值漂移率分别为-0.11~ -0.28%、-0.19~-0.38%、测温偏差分别为 0.024~ 0.062 °C、0.036~0.073 °C。因此, 尽管 NTC 热敏电 阻器应用于海洋温度测量时会进行铠装保护,但在 深海应用中静水压力的作用不可忽略;对压力效应 的探究, 有利于 NTC 热敏电阻器更好的在高压测温 领域的应用;同时更高的压力、更多数量的不同材 料、结构、工艺的 NTC 热敏电阻器的压力效应仍需 进一步研究。

参考文献

- 朱光文, 1983. 温度传感器的压力效应[J]. 海洋技术(4): 4955.
- 海洋仪器研究所二室温度组, 1978. 深海测温热敏电阻的探讨 [J]. 海洋技术(3): 2432, 43.
- ABRAHAM J P, BARINGER M, BINDOFF N L, *et al*, 2013. A review of global ocean temperature observations: implications for ocean heat content estimates and climate change [J]. Reviews of Geophysics, 51(3): 450483.
- CHEN C C, 2009. Evaluation of resistance-temperature calibration equations for NTC thermistors [J]. Measurement, 42(7): 11031111.
- DUMCIUS A, GAILIUS D, KUZAS P, 2014. Stability of negative resistance coefficient thermistors for longterm temperature measurement [J]. Elektronika ir Elektrotechnika, 20(6): 5760.
- FETEIRA A, 2009. Negative Temperature Coefficient Resistance (NTCR) Ceramic thermistors: an industrial perspective [J]. Journal of the American Ceramic Society, 92(5): 967983.
- FETEIRA A, REICHMANN K, 2010. NTC ceramics: past, present and future [J]. Advances in Science and Technology, 67: 124133.
- HACHIGA T, FUJIMOTO S, YUSUDA N, 1986. Temperature and pressure dependence of the dielectric properties of Pb(Co1/2W1/2)O3 [J]. Journal of Physics D: Applied Physics, 19(2): 291298.
- HACHIGA T, FUJIMOTO S, YASUDA N, 1987. Effect of hydrostatic pressure on the phase transition of ceramic Pb(Co12W12)O3 [J]. Physics Letters A, 123(1): 1618.
- HOGE H J, 1988. Useful procedure in least squares, and tests of some equations for thermistors [J]. Review of Scientific Instruments, 59(6): 975979.
- JOUNG W, GAM K, PEARCE J V, 2020. Pressure dependence of reference deepocean thermometers [J]. Meteorological Applications, 27(1): e1870.
- KULKARNI A, PATRASCU M, VAN DE VIJVER Y, et al, 2015. Investigation of LongTerm Drift of NTC Temperature Sensors with less than 1 mK Uncertainty [C] // Proceedings of the 2015 IEEE 24th International Symposium on Industrial Electronics (ISIE). Buzios: IEEE: 150155.

- LAWTON K M, PATTERSON S R, 2001. Longterm relative stability of thermistors [J]. Precision Engineering, 25(1): 2428.
- LAWTON K M, PATTERSON S R, 2002. Longterm relative stability of thermistors: part 2 [J]. Precision Engineering, 26(3): 340345.
- LI X H, CHEN X Y, GAO B, *et al*, 2021. SrCexNbxWO4+4x: a novel NTC ceramic for hightemperature thermistor with a wide temperature range [J]. Journal of the European Ceramic Society, 41(14): 70627068.
- LIU G, GUO L, LIU C L, *et al*, 2018. Evaluation of different calibration equations for NTC thermistor applied to highprecision temperature measurement [J]. Measurement, 120: 2127.
- MA C J, LIU Y F, LU Y N, *et al*, 2014. Effect of Zn substitution on the phase, microstructure and electrical properties of $Ni_{0.6}Cu_{0.5}ZnxMn_{1.9-x}O_4$ ($0 \le x \le 1$) NTC ceramics [J]. Materials Science and Engineering: B, 188: 6671.
- PERUZZI A, OBER S, BOSMA R, 2017. Effect of pressure on deepocean thermometers [J]. International Journal of Thermophysics, 38(11): 163.
- UCHIDA H, OHYAMA K, OZAWA S, et al, 2007. In situ calibration of the SeaBird 9plus CTD Thermometer [J]. Journal of Atmospheric and Oceanic Technology, 24(11): 19611967.
- WANG B, WANG J H, CHANG A M, et al, 2019. Bismuth trioxidetailored sintering temperature, microstructure and NTCR characteristics of Mn_{1.1}Co_{1.5}Fe_{0.4}O₄ ceramics [J]. Rsc Advances, 9(44): 2548825495.
- WANG B, WANG J H, CHANG A M, et al, 2021. Effects of particle sizes of starting oxides on the properties of spinel-type Mn_{1.1}Co_{1.5}Fe_{0.4}O₄ negative temperature coefficient ceramics [J]. Ceramics International, 47(2): 25312537.
- WANG B, YAO J C, WANG J H, et al, 2020. Valence-induced distortion controls the resistivity and thermal stability of Co_{2.77}Mn_{1.71}Fe_{1.10}Zn_{0.42}O₈ ceramics [J]. Materials & Design, 192: 108736.
- WUNSCH C, 2016. Global ocean integrals and means, with trend implications [J]. Annual Review of Marine Science, 8: 133.

EFFECT OF HYDROSTATIC PRESSURE VARIATION ON THE ELECTRICAL CHARACTERISTIC OF NTC THERMISTORS

LIU Zun-Jing^{1, 2, 3, 4}, WANG Jun-Hua^{1, 2, 3}, TANG Xin-Qiang^{1, 2, 3}, HUO Peng^{1, 2, 3, 4}, LIU Yi^{1, 2, 3, 4}, YAO Jin-Cheng^{1, 2, 3}, CHANG Ai-Min^{1, 2, 3}

(1. Key Laboratory of Functional Materials and Devices for Special Environments of CAS, Urumqi 830000, China; 2. Xinjiang Key Laboratory of Electronic Information Materials and Devices, Urumqi 830000, China; 3. Xinjiang Technical Institute of Physical & Chemical of CAS, Urumqi 830000, China; 2. School of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100000, China)

Abstract Negative temperature coefficient (NTC) thermistors are widely used in the ocean field due to their extreme sensitivity in a small temperature range. However, high hydrostatic pressure in abyssal ocean is detrimental to the accuracy of temperature measurement of the device. We designed a device to simulate highpressure environment of ocean, with which the effect of hydrostatic pressure on the electrical characteristics of bead NTC thermistor was studied under ambient conditions of 25 °C and 0 °C in 5 MPa pressure interval in range of 0~60 MPa. The results show that the resistance value of NTC thermistor decreases with the increase of hydrostatic pressure, the drifts caused by hydrostatic pressures in range of $5\sim60$ MPa was $-0.11\%\sim -2.81\%$, $-0.19\%\sim -2.78\%$ at 25 °C and 0 °C, respectively, being equivalent to a temperature drift of $0.024\sim0.624$ °C and $0.036\sim0.535$ °C, respectively. This study provides guidance for improving the accuracy of temperature measurement in abyssal ocean and facilitates the application of NTC thermistor in the field of ocean temperature measurement.

Key words negative temperature coefficient (NTC) thermistor; deepocean temperature; high pressure simulator; pressure effect