# 拟穴青蟹(Scylla paramamosain)PP2A 调节亚基 B 的基因克隆与表达分析<sup>\*</sup>

# 刘学良 金朱兴 黄辉洋 叶海辉 李少菁

(厦门大学海洋与地球学院 厦门 361005)

提要 采用 RT-PCR、RACE 等方法,获得了拟穴青蟹 PP2A 调节亚基 B(PP2A-B)的 cDNA 全序列, 全长 2040bp,开放阅读框(ORF)为 1332bp,可编码 443 个氨基酸残基。同源分析显示,该基因编码的 蛋白与其它一些物种具有很高相似性,推测 PP2A-B 基因具有很高的保守性。经荧光定量 PCR 检测, PP2A-B 基因在拟穴青蟹多个组织中有表达,且在脑、卵巢、鳃中表达量较高。在拟穴青蟹卵巢发育 过程中, PP2A-B 基因在卵巢未发育期(I 期)表达量最高,此后各期逐渐下降,推测 PP2A-B 在卵巢中 可能以 PP2A 全酶的形式存在,抑制卵巢发育。

关键词 PP2A-B, 拟穴青蟹, 基因克隆, 荧光定量 PCR, 卵巢发育 中图分类号 S917.4

蛋白质的磷酸化修饰是真核生物细胞内一种非 常重要的控制机制。这种磷酸化过程取决于蛋白激酶 和蛋白磷酸酶,这两种酶活性的平衡对于正常的细 胞新陈代谢至关重要(Wera et al, 1995)。相对于蛋白 激酶而言、学者对蛋白磷酸酶的研究相对较少。蛋白 磷酸酶 2A (protein phosphatase 2A, PP2A)是细胞生 长、分化和凋亡的一个重要的调节者,通过参与控制 众多蛋白质的磷酸化状态、调节 DNA 复制、转录以 及细胞代谢等众多的细胞过程(Virshup, 2000; Hubbard et al, 1993)。PP2A 是一个包含了 A、B、C 三个 亚基的异源三聚体蛋白磷酸酶。A亚基和C亚基一起 形成酶的催化核心,而B亚基调节PP2A的亚细胞定 位和催化底物特异性,为调节亚基(Mumby et al, 1993)。至今已发现的 26 个 B 族亚基分别属于 B、B'、 B"和 B""四个亚族、其中 PP2A-B 是 B 亚族中的重要 成员(Millward et al, 1999)。不同的 B 亚基可指导 PP2A, 使不同蛋白质中的丝/苏氨酸残基脱去磷酸基 团。分化后的细胞特有的 PP2A 亚型在很大程度上也 依赖于 B 亚基在不同细胞内的差异表达(Tehrani et al, 1996; Zolnierowicz et al, 1994)。目前, 有关甲壳动物 PP2A-B 基因的报道甚少。

有关 PP2A-B 的功能研究,在哺乳类、鸟类、鱼 类、线虫、昆虫等已有报道,但在甲壳动物,目前仅 能查到蚤状溞(*Daphnia pulex*)和蜘蛛蟹(*Libinia emarginata*)等少数物种 PP2A-B 基因序列,迄今未见甲壳 动物 PP2A-B 基因功能研究的报道。

拟穴青蟹(Scylla paramamosain)是中国东南沿海 4 种青蟹中最主要的类群,是一种重要的海水养殖蟹 类(林琪等,2007),目前对其分子生物学的研究集中 在种质鉴定和分子生态学,有关功能基因的研究尚 少。本文报道了拟穴青蟹 PP2A-B 的分子克隆,并检 测其在各个组织中和卵巢发育过程中的表达情况, 可为拟穴青蟹的生长、发育、生殖等分子机制研究奠 定理论基础。

### 1 材料与方法

#### 1.1 材料

**1.1.1** 实验动物 拟穴青蟹购自厦门市大学路农 贸市场,挑选活性好、附肢健全的雌性个体,甲壳长 度为 6.2—8.8cm,体重为 150—420g,实验室暂养 1d。

\* 国家自然科学基金资助项目,40406030 号,41076081 号。刘学良,E-mail: liuxmu@126.com
 通讯作者:叶海辉,博士,教授,E-mail: haihuiye@xmu.edu.cn
 收稿日期: 2012-06-15,收修改稿日期: 2012-08-18

1.1.2 主要试剂 TRIzol<sup>®</sup> Reagent Total RNA Isolation Reagent (Invitrogen 公司); RevertAid<sup>™</sup> First Strand cDNA Synthesis Kit (Fermentas 公司); SMART<sup>™</sup> RACE cDNA Application Kit (Clontech 公 司); DNase I、RNase、LA *Taq*<sup>®</sup>、dNTPs、pMD19-T、 DNA Marker (Takara 公司); E.Z.N.A 胶回收试剂盒 (Omega 公司)。

#### 1.2 方法

1.2.1 引物设计 根据 GenBank 中已知的昆虫及 蚤状溞 PP2A-B 的基因序列和对应的蛋白质序列,通 过 Clustal X 比对,在 PP2A-B 的保守区域设计了简并 引物 PPF 和 PPR,用于扩增拟穴青蟹 PP2A-B 基因片 段。根据已获得的 PP2A-B 基因片段,设计 RACE 特 异性引物(表 1),以得到该基因全长 cDNA 序列。然 后根据得到的全长 cDNA 序列,设计荧光定量引物 PF 和 PR(表 1)。

1.2.2 总 RNA 的抽提和 cDNA 第一链的合成 取 拟穴青蟹胸神经团组织,参照 Invitrogen 公司 Trizol 试剂使用说明提取总 RNA。以紫外分光光度计和琼 脂糖凝胶电泳检测 RNA 的浓度及纯度。取 1µg 总 RNA,参照 Fermentas 的 RevertAid<sup>TM</sup> First Strand cDNA Synthesis Kit 使用说明,反转录成 cDNA 模板, -20℃保存备用。

**1.2.3** PP2A-B 基因全长 cDNA 的克隆 使用简并 引物 PPF/PPR,以上述 cDNA 为模板,扩增 PP2A-B 基因片段。PCR 产物回收纯化后与 pMD19-T(TaKaRa) 载体连接,转化到 DH5 $\alpha$ 感受态细胞,于含有 AMP 的 LB 平板上培养 14h,挑取单克隆菌落,接种于含 AMP 的 LB 培养基中, 37°C 过夜培养,菌落 PCR 鉴定 阳性克隆并测序。该序列经 BLAST 后,确定是拟穴 青蟹 PP2A-B 基因。根据设计的 RACE 引物(表 1),用 Clontech 公司的 SMART<sup>™</sup> RACE cDNA Application Kit,以拟穴青蟹胸神经团总 RNA 为模板分别扩增该 基因 cDNA 的 3′与 5′端,扩增产物经克隆、测序后,获 得 cDNA3′端序列与 5′端序列,具体步骤参照试剂盒 的说明书。

**1.2.4** PP2A-B基因 cDNA 全序列分析 应用 ORF Finder 程序(http://www.ncbi.nlm.nih. gov/gorf/gorf.html) 确定正确的开放阅读框并推导其编码的氨基酸序列。 Protparam 程序(http://www.expasy.org/tools/protparam. html)预测氨基酸序列的物理参数; SignalP 3.0 server 程序(http://www.cbs.dtu.dk/services/SignalP)预测信号 肽; Protscal 程序(http://www.expasy.ch/ tools/protscale. html)预测蛋白质的疏水性; 采用 Clustal 与 MEGA 软 件对序列进行同源性的分析,并采用邻位相接法 (neighbor-joining, N-J)构建系统进化树。

**1.2.5** PP2A-B 基因的表达量分析 参照 Trizol (Invitrogen)说明书提取拟穴青蟹各组织(肌肉、胸神 经团、卵巢、血淋巴、脑、心脏、肝胰腺、鳃、胃) 的总 RNA, 卵巢发育分期参照上官步敏等(1991), 分 为未发育期、发育早期、发育期、将成熟期、成熟期 等 5 期。用 PrimeScript<sup>TM</sup> 1st Strand cDNA Synthesis Kit (Takara)试剂盒合成一链 cDNA 用于荧光定量表 达分析。qRT-PCR 反应体系为 20µl:  $2\times$ SYBR<sup>®</sup> Premix Ex *Taq*<sup>TM</sup> 10µl, cDNA 模板 2µl, 荧光定量引物各 0.8µl (10µmol/L), 6.4µl 双蒸水。每个样品设置 3 个重复, 用 β-actin 基因作内参,均一化各样品 cDNA 用量的差异, 引物为β-actin F 和β-actin R(表 1)。反应程序为 95<sup>°</sup>C 热变性 30s; 94<sup>°</sup>C变性 10s, 55<sup>°</sup>C退火 30s, 72<sup>°</sup>C延伸 40s, 42 个循环。之后进行融解曲线(Melting curve)分析, 以

|          | 表 | 1 | 引物序列 |
|----------|---|---|------|
| <b>L</b> | 1 | р |      |

| Tab.1 Filmer sequences |               |                           |  |  |  |
|------------------------|---------------|---------------------------|--|--|--|
| 引物类别                   | 引物名称          | 引物序列(5' 3')               |  |  |  |
| 简并引物                   | PPF           | CWGCWCABTTYYTAYTBTC       |  |  |  |
|                        | PPR           | CNGCHGTKATNACYTCBGT       |  |  |  |
| 3'RACE 特异引物            | PP3F          | CTTGTCTGCTGATGACCTTCG     |  |  |  |
| 5'RACE 特异引物            | PP5R          | CGTAAAGCAGTAAGTGAAGTTGGGT |  |  |  |
| RACE 试剂盒               | 3'RACE Primer | TACCGTCGTTCCACTAGTGATTT   |  |  |  |
| 提供的外引物                 | 5'RACE Primer | CATGGCTACATGCTGACAGCCTA   |  |  |  |
| 荧光定量引物                 | PF            | ATAGATGGATGTTTGGGCAGTG    |  |  |  |
|                        | PR            | TGGGTGAGGTCATACAGAAGGAA   |  |  |  |
| β-actin 定量引物           | β-actinF      | GAGCGAGAAATCGTTCGTGAC     |  |  |  |
|                        | β-actinR      | GGAAGGAAGGCTGGAAGAGAG     |  |  |  |

2

海 洋 与 湖 沼 43 卷

AGCCACAGGAGGACGGTGCCGCCATACTGGTGTTATTGTGGACTGTATCGTTATATCCCATGCCATC 67 判定 PCR 扩增反应的 特异性。 结果 MAGNGDIQWCFSQVKGTLDDVSEADIISC 1  ${\tt GTGGAGTTCAACCATGATGGGGACTTGCTGGCCACAGGGGACAAGGGCGGCCGGGTGGTCATCTTCCAGCGGGACCCCTCATCGAAAAAC = 337$ 2.1 PP2A-B全长cDNA VEFNHDGDLLATGDKGGRVVIFQRDPSSKN 31 的克隆和序列分析  ${\tt TGCCACCCTCGCCGGGGCGAGTACAATGTCTACAGCACCTTCCAGAGTCATGAGCCTGAGTTTGACTACCTTAAATCTTTAGAAATTGAA 427$ 通过设计的简并 C H P R R G E Y N V Y S T F Q S H E P E F D Y L K S L E I E 引物 PPF 和 PPR. 以拟 61  ${\tt GAAAAAATCAATAAAATAAGATGGCTCAAGAGGAAAAAACCCTGCACACTTCTTACTCTCTACTAATGATAAAAACCATAAAGCTATGGAAA 517$ 穴青蟹胸神经团 cDNA E K I N K I R W L K R K N P A H F L L S T N D K T I K L W K 为模板扩增得到一个 91 GTGTCAGAACGAGACAAACGAGCAGAAGGCTACAACCTGCGTGATGAGTCCGGCCAGATCAGGGACCCAACTTCACTTACTGCTTTACGG-607cDNA 片段, 测序后在 GenBank 数据库中进 121 V S E R D K R A E G Y N L R D E S G Q I R D P T S L T A L R 行对比.发现该序列与 GTACCTGTATTAAAACCAATGGAATTGATGGTTGAAGCTTCCCCTAGGAGAATTTTTTGCAAATGCACACGCATCACATCAACTCTATC 697其它物种的 PP2A-B 序 151 V P V L K P M E L M V E A S P R R I F A N A H T Y H I N S I 列显示了较高的相似 TCAATCAACTCAGACCAGGAGACTTACTTGTCTGCTGATGACCTTCGTATTAACCTGTGGCACATGGAGGTCACTGATCAGTCCTTTAAT 787 性、基本确认为拟穴青 181 SINSDQETYLSADDLRINLWHMEVTDQSFN 蟹 PP2A-B 基因序列。 ATAGTAGACATCAAGCCCACTAACATGGAGGAGGTGACGGAGGTGATCACGGCAGGAGGTTTCACCCACACGACTGCAACGTGTTCGTG = 877基于该片段设计 RACE 211 I V D I K P T N M E E L T E V I T A A E F H P H D C N V F V 引物进行 5'和 3'末端扩 TACTCTAGCAGTAAAGGAACCATAAGGCTTTGTGACATGCGACAAGCAGCCCTCTGTGATAGTCATTCTAAGTTGTTTGAGGAGCCCCGAG 967 增,得到 5'末端序列和 241Y S S S K G T I R L C D M R Q A A L C D S H S K L F E E P E 3'末端序列,最后拼接 GATCCCACCAATCGGAGTTTCTTCAGTGAAATCATCTCCTCCATAAGTGATGTCAAAATTTTCAAACAGTGGTCGCTACATGATATCAAGA 1057 得到一条完整的 cDNA 271 D P T N R S F F S E I I S S I S D V K F S N S G R Y M I S R 序列。Blast 比对发现该 1147 序列与其它物种的 301 DYLSVKVWDLHMETKPIETYPVHEYLRPKL PP2A-B序列同样显示 TGCTCATTGTATGAGAATGATTGTATTTTTGACAAGTTTGAATGCTGCTGGAGTGGCAATGACTCAGCAATTATGACTGGCTCATACAAC 1237 了较高的同源性,从而 331 C S L Y E N D C I F D K F E C C W S G N D S A I M T G S Y N 确定为拟穴青蟹 PP2A-AACTTCTTCCGAATGTTTGATAGGACTTCAAAACGTGATGTTACATTAGAGGCTTCAAGGGAAACTGCCAAGCCCAGATATTTACTTAAA 1327 B cDNA 序列。其全长 361 N F F R M F D R T S K R D V T L E A S R E T A K P R Y L L K 为 2040bp, 编码区长 度为 1332bp, 编码 443 391 P R K V C T A G K R K K D E I S V D C L D F N K K I L H T A 个氨基酸。此外还有 TGGCACCCACATGAAAATATTATAGCTGTTGCTGCCACTAACAATCTTTACATATTCCAAGATAAATTTTAGCAGTCCTCCTCTGACGAC 1507 157bp 的 5'UTR 和 421 W H P H E N I I A V A A T N N L Y I F Q D K F \* 551bp 的 3'UTR, 其中 TAGAGCTTAGGCCCTGCCATAGATGGATGTTTGGGCAGTGATGCCGGGTGTGTGGAGGGAAGGTCCTTAGTGGCCAGTGTTCCTTCTGTA 1597 3'UTR 区域含有典型的 TGACCTCACCCAAGTGTTGACATCCACTGCTGGAAGCCATCAACTCATGCTGGCCACTCTTGGCATCCATTTATCAAGGTGTGGCTCTTG 1687 加尾信号 AATAAA 和 TCTTGGGTTGCTTCCAAGACAATGGTGGTCCCAAATGTGTGAACGAGTGGCAACCAAAAAGCCAAGGGCAGTAGTGGTGGAGTCCCCCAA 1777 poly A 尾(图 1)。平均分 TGAATGTCCAGTGGCTGAGGCTTGGATTACTTGTGATTCTTGAAAAATCCGTGGGTGTCCCACCCTTGTGATCATTTATCTGTGTTTCACC 1867 子量为 51255.8Da, pI 为 CTCAGATCATCTGTTGAGAAGTGCAAACATTAGTTGCCTTCTCAAGGCTATTAAAAAGATATATGAGTTATGGCTGACTAGGTGAATCCA1957 5.96, 预测其在体外的 2040 不稳定指数(instability index)为 40.32、大于 40、 拟穴青蟹 PP2A-B cDNA 及其推导的氨基酸序列 图 1 为不稳定蛋白质。Sin-Fig.1 The cDNA and deduced amino acid sequence of PP2A-B from S. paramamosain gnlaP 3.0 分析拟穴青蟹 注: 灰色框所示为简并引物结合位点; 下划线所示为 RACE 引物结合位点; \*代表终止密码子; PP2A-B 没有发现信 方框所示为 3'UTR 中的加尾信号 号肽。



#### 图 2 基于 N-J 法构建的系统发育树

Fig.2 Phylogram based on Neighbor-joining method
Bombus terrestris: 熊蜂(XP\_003401091); Apis mellifera: 意蜂(XP\_394082); Camponotus floridanus: 佛罗里达弓背蚁(EFN72063); Nasonia vitripennis: 丽蝇蛹集金小蜂
(XP\_003426482); Aedes aegypti: 埃及伊蚊 (XP\_001657334); Drosophila melanogaster: 果蝇 (AAA99871); Daphnia pulex: 蚤状溞(EFX77026); Libinia emarginata: 蜘蛛蟹 (GQ887353); Scylla paramamosain: 拟穴青蟹(JQ867383); Danio rerio: 斑马鱼
(NP\_998045); Homo sapiens: 人(EAW63580); Gallus gallus: 鸡(AAN85209); Mus musculus: 鼠(NP\_080667); Caenorhabditis elegans: 秀丽隐杆线虫(AF174643); Schistosoma mansoni: 曼氏血吸虫(XM\_002580312)



通过 NCBI 的 BlastP 比对分析, 发现 PP2A-B 存 在一个高度保守的区域, 属于 WD40 超家族, 与其它 物种的 PP2A-B 结构域分析相一致。

## 2.2 PP2A-B 序列同源性分析

将拟穴青蟹 PP2A-B cDNA 序列推导的氨基酸与 其它物种的同源蛋白在 ClustalX 中进行多序列比对 分析,结果显示: 拟穴青蟹 PP2A-B 序列与蜘蛛蟹 (Libinia emarginata)、熊蜂(Bombus terrestris)、果蝇(Drosophila melanogaster)和斑马鱼(Danio rerio)的相似率分别为95%、90%、 85%和84%。图2是用ClastalX对 实验所得拟穴青蟹的氨基酸序列 与已有的其它一些物种进行对比 后,以Mega软件的邻位相接法 (neighbor-joining, N-J)绘制的系统 进化树。

2.3 PP2A-B基因的表达分析 2.3.1 PP2A-B在各组织中的表达 依据实验所得拟穴青蟹 PP2A-B cDNA序列设计特异引物 PF、PR, 利用 qRT-PCR 技术检测 PP2A-B 基因在拟穴青蟹不同组织中的表 达情况。结果显示, PP2A-B在所检 测的 9 个组织(肌肉、胸神经团、 卵巢、血淋巴、脑、心脏、肝胰腺、 鳃、胃)中均有表达,且在脑、卵巢、 鳃中表达量较高,而在肌肉中表 达量最低(图 3)。

2.3.2 PP2A-B 在卵巢发育过程中的表达 为检测不同卵巢发育时期 PP2A-B 的表达量,提取了拟 穴青蟹未发育期、发育早期、发育 期、将成熟期和成熟期的卵巢总 RNA。qRT-PCR 结果显示, PP2A-B 在未发育期(期)卵巢表达量最 高,之后随着卵巢发育逐渐下降 (图 4)。

3 讨论

本研究通过 RACE 技术获得 了拟穴青蟹 PP2A-B cDNA 序列, 全长为 2040bp (GenBank 登陆号:

JQ867383),包括1332bp的ORF,编码443个氨基酸。 序列分析发现,PP2A-B 基因的氨基酸序列在不同物 种间具有较高的同源性,暗示该基因在进化上和功 能上的保守性。作者对拟穴青蟹 PP2A-B 的结构进行 预测,发现它含有 7 个 WD40 重复结构。一般认为, WD40 能够调节细胞分裂、基因转录和跨膜信号转导 (Eva *et al*, 1994)。另外推测,这种 WD40 重复结构作





为与 PP2A 结构亚基 A 相结合的区域,为 B 家族调节 亚基参与 PP2A 三聚体的装配提供了支点,参与了全 酶装配(Moreno *et al*, 2000)。据报道,其它的调节亚基 也都有特殊的一级结构与结构亚基 A 相互作用,包 括 B'/PR61 家族的 HEAT-like 重复结构和 B''家族的 EF-HAND 结构(郑春兵等, 2009; Li *et al*, 2002)。这些 由不同亚基组成的 PP2A 全酶具有不同的组织和亚细 胞定位、不同底物的特异性以及不同的生物学调节方 式(Janssens *et al*, 2008)。

迄今为止, PP2A 已经在人、小鼠、非洲爪蟾 (Xenopus laevis)、金鱼(Carassius auratus)等物种中得 到克隆和分析,研究表明 PP2A 能够促进细胞凋亡 (Alvarado-Kristensson et al, 2005);可阻滞 G2 期细胞 进入 M期,从而将细胞周期阻滞在 G2 期(Clarke et al, 1993);同时, PP2A 在调控细胞信号通路、基因转录、 离子通道等方面有重要作用(Janssens et al, 2001; Reinhart et al, 1991)。另外,越来越多的证据表明,调 节亚基 B 除了参与 PP2A 全酶功能外,还可能具有独 立的发育调控功能,目前已发现 B 亚基在金鱼脑的发 育过程中有重要作用(Zhao et al, 2010)。

本研究利用 qRT-PCR 技术对拟穴青蟹不同器官 中的 PP2A-B 进行了定量分析,发现 PP2A-B 所检测 的 9 个组织(肌肉、胸神经团、卵巢、血淋巴、脑、 心脏、肝胰腺、鳃、胃)中均有表达,且在脑中表达量 最高,卵巢和鳃次之,其它组织的表达量较低。拟穴 青蟹 PP2A-B 基因在脑中的高表达,可能与 B 亚基在 脑的发育过程中有重要的调控功能相关。PP2A-B 在 拟穴青蟹卵巢中的表达量也很高,提示其可能在生 殖细胞的发育和成熟中具有非常重要的作用(Fu *et al*, 2009)。而鳃是甲壳类渗透压调节和离子转运的主要 器官, 富含各种离子通道(潘鲁青等, 2005), PP2A-B 在拟穴青蟹鳃中的高表达,可能与 PP2A 参与了离子 通道的调控有关, B 亚基可能以 PP2A 全酶的形式行 使其调控作用(Reinhart et al, 1991)。迄今, PP2A-B 在 甲壳动物卵巢发育过程中的作用尚未见报道。为了探 究 PP2A-B 在拟穴青蟹卵巢发育过程中的调节作用, 作者对 PP2A-B 表达量进行了分析。结果显示, PP2A-B 在未发育期( 期卵巢)含量最高。 期卵巢 的卵子发生处于相对静止期、PP2A-B 在该期高表达、 推测与 PP2A 能够抑制细胞分裂有关。此时, PP2A-B 可能与催化亚基 A、C 结合以 PP2A 全酶的形式存在、 PP2A 能够将细胞阻滞在 G2 期(Clarke et al, 1993), 从 而抑制了卵巢的发育,使其停留在未发育期阶段,不 能启动卵黄发生。当拟穴青蟹卵巢发育进入 期(发 育早期)后, PP2A-B 表达量开始下降, 并逐渐降低, 解除了对卵巢发育的抑制作用、使得卵巢中的卵母 细胞得以开启卵黄发生,并在此后的各期中卵母细 胞逐渐生长、最终进入成熟期。

国内外大量研究表明, PP2A 调节亚基 B 具有多 重调控功能, 迄今其分子作用机制远未阐明。为了更 加清楚地认识 PP2A-B 基因在拟穴青蟹不同组织和卵 巢发育中的作用, 可通过 RNA 干扰等手段, 进一步 验证 PP2A-B 基因的功能。

#### 参考文献

- 上官步敏, 刘正琮, 李少菁, 1991. 锯缘青蟹卵巢发育的组织 学观察. 水产学报, 15(2): 96—103
- 林 琪,李少菁,黎中宝等,2007.中国东南沿海青蟹属 (Scylla)的种类组成.水产学报,31(2):211—219
- 郑春兵,马海立,付 虎等,2009. 金鱼 PP2A-B"家族 Alpha 和 Gamma 调节基因的 cDNA 克隆及 mRNA 表达. 自然科学 进展,19:36—42
- 潘鲁青,刘泓宇,2005.甲壳动物渗透调节生理学研究进展. 水产学报,29(1):109—114
- Alvarado-Kristensson M, Andersson T, 2005. Protein phosphatase 2A regulates apoptosis in neutrophils by dephosphorylating both p38 MAPK and its substrate caspase 3. The Journal of Biological Chemistry, 280: 6238–6244
- Clarke P R, Hoffmann I, Draetta G *et al*, 1993. Dephosphorylation of cdc25-C by a type-2A protein phosphatase: specific regulation during the cell cycle in *Xenopus* egg extracts. Molecular Biology of the Cell, 4: 397–411
- Eva J N, Carl J S, Raman N *et al*, 1994. The ancient regulatory-protein family of WD-repeat proteins. Nature, 371: 297– 300

- Fu H, Ma H L, Zheng C B et al, 2009. Molecular cloning and differential expression patterns of the regulatory subunit B'gene of PP2A in goldfish, *Carassius auratus*. Science in China Series C: Life Sciences, 52(8): 724–732
- Hubbard M J, Cohen P, 1993. On target with a new mechanism for the regulation of protein phosphorylation. Trends in Biochemical Sciences, 18(5): 172—177
- Janssens V, Goris J, 2001. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signaling. Biochemical Journal, 353: 417–439
- Janssens V, Longin S, Goris J, 2008. PP2A holoenzyme assembly: in cauda venenum (the sting is in the tail). Trends in Biochemical Sciences, 33(3): 113—121
- Li X H, Virshup D M, 2002. Two conserved domains in regulatory B subunits mediate binding to the A subunit of protein phosphatase 2A. European Journal of Biochemistry, 269(2): 546—552
- Millward T A, Zolnierowicz S, Hemmings B A, 1999. Regulation of protein kinase cascades by protein phosphatase 2A. Trends in Biochemical Sciences, 24: 186–191
- Moreno C S, Susan Park, Kasey Nelson *et al*, 2000. WD40 repeat proteins striatin and S/G2 nuclear autoantigen are members of a novel family of calmodulin-binding proteins that associate with protein phosphatase 2A. The Journal of Biological

Chemistry, 275: 57-63

- Mumby M C, Walter G, 1993. Protein serine/threonine phosphatases: structure, regulation, and functions in cell growth. Physiological Reviews, 73(4): 673–699
- Reinhart P H, Chung S, Martin B L et al, 1991. Modulation of calcium-activated potassium channels from rat brain by protein kinase A and phosphatase 2A. The Journal of Neuroscience, 11(6): 1627—1635
- Tehrani M A, Mumby M C, Kamibayashi C, 1996. Identification of a novel protein phosphatase 2A regulatory subunit highly expressed in muscle. The Journal of Biological Chemistry, 271(9): 5164—5170
- Virshup D M, 2000. Protein phosphatase 2A: a panoply of enzymes. Current Opinion in Cell Biology, 12(2): 180–185
- Wera S, Hemmings B A, 1995. Serine/threonine protein phosphatases. Biochemical Journal, 311(1): 17–29
- Zhao J Q, Xie S S, Liu W B et al, 2010. Molecular cloning of the genes encoding the pR55/B / regulatory subunits for pp-2A and analysis of their functions in regulating development of goldfish, Carassius auratus. Gene Regulation and Systems Biology, 4: 135—148
- Zolnierowicz S, Csortos C, Bondor J *et al*, 1994. Diversity in the regulatory B-subunits of protein phosphatase 2A: identification of a novel isoform highly expressed in brain. Biochemistry, 33(39): 11858–11867

## CLONING AND EXPRESSION ANALYSIS OF THE REGULATORY SUBUNIT B GENE OF PP2A IN THE MUD CRAB SCYLLA PARAMAMOSAIN

LIU Xue-Liang, JIN Zhu-Xing, HUANG Hui-Yang, YE Hai-Hui, LI Shao-Jing (College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005)

**Abstract** In this paper, the regulatory subunit B gene of PP2A (PP2A-B) was isolated from the mud crab, *Scylla paramamosain* using RT-PCR and RACE methods. The obtained full-length cDNA of PP2A-B was 2040bp with an open reading frame of 1332bp encoding a putative peptide of 443 amino acid. By alignment, the amino acid sequence of *S. paramamosain* PP2A-B showed high homology with those of some other animals. It suggested PP2A-B was highly conservative. Real-time PCR showed that the PP2A-B gene was expressed in various tissues, and highly expressed in brain, ovary and gill. The PP2A-B mRNA expression during ovarian development indicated that the expression of PP2A-B was obviously high at undeveloped stage and decreased gradually from stage I (undeveloped stage) to stage V (ripe stage). We hypothesized that PP2A-B may exist in the form of PP2A holoenzyme in ovary and play a suppressive role on the ovarian development of the mud crab.

Key words PP2A-B, Scylla paramamosain, Gene cloning, Real-time RT-PCR, Ovarian development