南海东北部深水海域大振幅内孤立波 SAR 遥感仿真研究^{*}

石新刚¹ 范植松² 司宗尚²

(1. 中海油能源发展股份有限公司北京分公司 北京 100027; 2. 中国海洋大学海洋环境学院 青岛 266100)

提要 为了克服基于两层海洋的内孤立波 SAR 遥感仿真模型的缺陷,使用基于连续分层海洋模型 的 GK-dV 方程,在南海东北部深水海域进行了大振幅内孤立波传播模拟,模拟输出内孤立波振幅 91.0 m,半波宽度 262.0 m。然后使用新建立的基于连续分层海洋模型的内孤立波 SAR 遥感仿真模型 进行了内孤立波反演,反演出内孤立波半波宽度 251.5 m,相对输入误差为 4.0%,比旧模型的 34.2% 有了较大改进。

关键词 SAR 遥感,内孤立波,连续分层海洋模型,半波宽度,南海 中图分类号 P731

海洋 SAR 遥感技术是研究陆架海域内孤立波的 强有力的手段, 其具有全天候、高分辨率和范围广等 优点,因而已成为研究陆架海域内波的重要方法之 一。目前国内外通行的内孤立波 SAR 遥感技术是建 立在两层海洋内孤立波模型和电磁波后向散射二尺 度模型基础上的仿真模拟和反演技术, 其缺陷主要 表现为(Fan et al, 2008a; Fan et al, 2008b; Liu et al, 2004; Ramp et al, 2004): (1)在雷达的高波段(X和C波 段), 雷达波成像被现有模型严重低估; (2)大振幅内 孤立波的波振幅及波宽度等反演结果严重偏离实测 结果。Zheng 等(2001)给出了基于两层海洋模型的 内孤立波 SAR 遥感仿真模型和从内孤立波 SAR 遥感 图像计算半波宽度的方法。Fan 等(2008a,b)在前人工 作的基础上提出和发展了陆架海域内孤立波的 SAR 遥感模型,其主要思想是把海洋进行连续分层,并在 海洋表面毛细重力波的波作用量平衡方程中考虑内 孤立波引起的湍流所致的波作用量,初步解决了在 雷达高波段成像被低估的问题。

作者在本文中使用基于连续分层海洋模型的 GK-dV 方程时,将刘海龙等(Liu *et al*, 2005)海洋环流 的数值模拟结果和南海潮流的数值模拟结果进行合 成(石新刚等,2009),作为背景剪切流场,针对南海 东北部深水海域(深水海盆和陆架坡折海域)大振幅内 孤立波的传播进行了数值模拟,并在此基础上进行 SAR 遥感仿真研究,获得了若干有意义的结果。

1 温、盐资料处理和背景流场模拟

温度、盐度资料使用美国国家海洋大气局 (NOAA)海洋资料中心(NODC)网站提供的 0.25°× 0.25°网格的全球数据。用 33 层的季平均数据对 24 层的月平均数据进行弥补,构成 33 层的全球月平均 温、盐数据。

本文中使用的背景流场由斜压环流和正压潮流 两部分组成。斜压环流数据使用 LICOM1.0 模式(刘 海龙等, 2004; Liu *et al*, 2005)稳定积分 950 年后输出 的结果线性插值到 0.25°×0.25°网格的月平均值。正压 潮流数据使用在南海 99°—122°E 和 2°—25°N 区域, 运用 POM 模式模拟 30 天输出的 $\frac{1}{3}$ × $\frac{1}{3}$ [°] 网格月平均 数据。在模式模拟工作中采用和 Fes95 模式(Provost *et al*, 1998)相同的边界条件,并且仅考虑 M_2 、 S_2 两个半 日分潮和 K_1 、 O_1 两个全日分潮。

^{*} 国家自然科学基金项目,40706055 号。石新刚,工程师, E-mail: shixg2002@gmail.com 收稿日期: 2010-06-10,收修改稿日期: 2011-09-18

本文中作者选取南海东北部沿 21°N 线、从 118.5°E 向 117.0°E 传播的大振幅内孤立波进行模拟, 该海域的海底地形和站位分布如图 1 所示。选取 5 月 份,进行大振幅内孤立波的数值模拟,在传播模拟基 础上进行内孤立波 SAR 遥感仿真研究。许多学者 (Klymak *et al*, 2006;柯自明等, 2009)观测到此海域 内孤立波是向西传播的,因此斜压环流和正压潮流 均只取 U 分量(东分量)。

图 1 南海东北部 21°N 模拟海域海底地形和站位分布图 Fig.1 The sea-floor relief and modeling stations along 21°N in the northeast South China Sea

由于此海域潮汐既不是规则的半日潮又不是规则的全日潮(Beardsley *et al*, 2004),所以选取典型正 压潮流流速进行计算。表 1 是陆架坡折海域站位 S7 和深水海盆站位 S3 两个典型站位的潮流流速和流向 表,为*M*₂、*S*₂、*K*₁和*O*₁四个分潮每间隔 1 h 输出流 速的合成值。由此选取正压落潮流流速为 0.04 m/s, 方向向东,与斜压环流 *U* 分量叠加构成本文计算使 用的背景流场。由于在本文所研究海域正压涨落潮潮 流对内孤立波主孤立子波形和振幅影响的差别较小 (石新刚等, 2009),所以本文仅取正压落潮流情况为 例,下文所得结论对于正压涨潮流情况亦成立。图 2 为 S1-S7 站位斜压环流 *U* 分量分布图。

2 使用基于连续分层海洋的GK-dV方程模 拟内孤立波的传播

本文使用的基于连续分层海洋的描述非线性内 孤立波的 GK-dV 方程如下(Fan *et al*, 2008a; Holloway *et al*, 1997):

$$\frac{\partial \eta}{\partial t} + c \frac{\partial \eta}{\partial x} + \alpha \eta \frac{\partial \eta}{\partial x} + \beta \frac{\partial^3 \eta}{\partial x^3} + \frac{c}{2Q} \frac{dQ}{dx} \eta +$$

$$\frac{\kappa c}{h^2} \eta |\eta| - v \frac{\partial^2 \eta}{\partial x^2} = 0$$
(1)

内孤立波的等密度面的垂直位移为 $\eta(x,t) \Phi(z)$,

表 1	S7	和 S3	站位正	压潮流	流速和	流向	表
-----	-----------	------	-----	-----	-----	----	---

Tab.1 The speeds and directions of the barotropic tidal currents at stations S7 and S3

时间序列	S7 站位		S3 站位		
(h:min)	V(m/s)	方向(°)	V(m/s)	方向(°)	
00:00	0.032	18.43	0.03	0	
01:00	0.022	26.57	0.032	18.43	
02:00	0.014	45.0	0.022	26.57	
03:00	0.01	90	0.014	45.0	
04:00	0.01	90	0.01	90	
05:00	0.01	-180	0	0	
06:00	0.01	-180	0	0	
07:00	0.02	-180	0.01	-180	
08:00	0.02	-180	0.014	-135	
09:00	0.02	-180	0.014	-135	
10:00	0.02	-180	0.014	-135	
11:00	0.02	-180	0.01	-90	
12:00	0.01	-180	0.01	-90	
13:00	0.01	-180	0.01	-90	
14:00	0.02	-180	0	0	
15:00	0.02	-180	0.01	-180	
16:00	0.02	-180	0.01	-180	
17:00	0.022	153.43	0.01	-180	
18:00	0.014	135	0	0	
19:00	0.01	90	0	0	
20:00	0.01	90	0	0	
21:00	0.022	26.57	0.01	0	
22:00	0.032	18.43	0.02	0	
23:00	0.041	14.04	0.032	18.43	
24:00	0.041	14.04	0.041	14.04	

其中 $\eta(x,t)$ 满足方程(1)。在方程(1)中 t 是时间坐标, x是水平坐标,向西为正。c 为长内波的相速度, α 为非 线性系数, β 为频散系数, Q(x)反映深度的缓慢变化和 背景密度及背景流场剪切的水平变化, κ 为底摩擦系 数, v是湍流水平涡旋粘性系数, $h = \sqrt{\beta/c}$ 是内波模 态的垂直尺度。 α 、 β 和 Q(x)定义如下:

$$\alpha = \frac{3}{2} \frac{\int_{-H}^{0} (c - U)^2 (d\Phi/dz)^3 dz}{\int_{-H}^{0} (c - U) (d\Phi/dz)^2 dz}$$
(2)

$$\beta = \frac{1}{2} \frac{\int_{-H}^{0} (c - U)^2 \Phi^2 dz}{\int_{-H}^{0} (c - U) (d\Phi/dz)^2 dz}$$
(3)

$$Q = \frac{c^2 \int_{-H}^{0} (c - U) (d\Phi/dz)^2 dz}{c_0^2 \int_{-H}^{0} (c_0 - U_0) (d\Phi_0/dz)^2 dz}$$
(4)

其中 z 是垂直坐标,向上为正方向。(4)中带有下标'0'的量表示在任一固定点 x_0 该量的值,为方便计算 x_0 取为原点,具体在本文中即为 S1 站位。长内波相速 度 c 和某一模态内波垂直位移振幅的垂直结构函数 $\Phi(z)$ 由以下本征值问题的解确定(Shi *et al*, 2009):

$$\frac{\mathrm{d}}{\mathrm{d}z}\left[\left(c-U\right)^{2}\frac{\mathrm{d}\Phi}{\mathrm{d}z}\right]+N^{2}(z)\varphi=0,\,\Phi(-H)=\Phi(0)=0\quad(5)$$

01

80

160

240

320

400

0 []

300

600 ε

账 900

1200

阌

S7站位

-0.02

速度/(m·s⁻¹)

0.00

é 深度/

其中 d/dz 表示求导, N(z)和 U(z)分别是 Brunt - Väisälä 频率和背景剪切流, H 为局地水深。 $\Phi(z)$ 使用其最大 值进行归一化。S7站位的密度p和 Brunt -- Väisälä 频率 分布图见图 3a, 在该站位的第一模态垂直结构函数 $\Phi(z)$ 的分布图见图 3b。图 4 为与第一模态所对应的 c、 α、 β和 Q 在 S1-S7 站位的分布图。后文的内孤立波 模拟也是对应于第一模态。

 $\int dx dx$

令:

$$s = \int_{0}^{x} \frac{dx}{c(x)} - t$$
(6)
$$\xi = \eta \sqrt{Q(x)}$$
(7)

代入(1)式得:

$$\frac{\partial\xi}{\partial x} + \frac{\alpha}{c^2\sqrt{Q}}\xi\frac{\partial\xi}{\partial s} + \frac{\beta}{c^4}\frac{\partial^3\xi}{\partial s^3} + \frac{\kappa c}{\beta\sqrt{Q}}\xi|\xi| - \frac{\nu}{c^3}\frac{\partial^2\xi}{\partial s^2} = 0 \quad (8)$$

写出(8)式的有限差分格式(Fan et al, 2008a; Holloway et al, 1997):

$$\frac{\xi_{j}^{n+1} - \xi_{j}^{n-1}}{D} + \frac{\alpha_{i}}{c_{i}^{2}\sqrt{Q_{i}}} \frac{\xi_{j+1}^{n} - \xi_{j-1}^{n}}{T} + \frac{\beta_{i}}{c_{i}^{2}} \frac{\xi_{j+2}^{n} - 2\xi_{j+1}^{n} + 2\xi_{j-1}^{n} - \xi_{j-2}^{n}}{T^{3}} + \frac{2\kappa c_{i}}{\beta_{i}\sqrt{Q_{i}}} \xi_{j}^{n} \left|\xi_{j}^{n}\right| - \frac{2\nu}{c_{i}^{3}} \frac{\xi_{j+1}^{n} - 2\xi_{j}^{n} + \xi_{j-1}^{n}}{T^{2}} = 0$$
(9)

其中 *j、n* 和 *i* 分别为时间角标、空间角标和站位角 标。由于模拟区域比较大,所以分做两段进行模拟。 在深水海盆站位 S1-S4 取 k=0.001, v=5.0 m²/s; 在陆 架坡折海域站位 S5-S7 取κ=0.002, ν=5.0 m²/s。且式

图 3 S7 站位密度和 Brunt - Väisälä 频率分布(a)及第一模 态垂直结构函数 $\Phi(z)$ 的分布(b)

Fig.3 The distributions of density and Brunt-Väisälä frequency N(z) (a), the vertical profile of $\Phi(z)$ for the first mode (b) at station S7

0

60

120 E

240

300

-0.06

-0.04

图 2 5月份站位 S1-S7 斜压

环流 U 分量的分布图

Fig.2 The component U of circulation at stations S1-S7 in May

118.5°

118.5°

S2

图 4 c、 α 、 β 和 Q 分布图 Fig.4 The distributions of c, α , β and Q

(9)需满足稳定性条件(Fan *et al*, 2008a; Holloway *et al*, 1997)

$$D < 0.38T^3 / \beta \tag{10}$$

式中 *D* 为 *x* 方向的空间计算步长,而 *T* 为时间的计算 步长。计算中,在满足式(10)的条件下采用变化的空 间步长,固定的时间步长(*T* 为 60s)。计算第一步用 $(\xi_j^1 - \xi_j^0)/D$ 取代 $(\xi_j^{n+1} - \xi_j^{n-1})/2D$,其中 ξ_j^0 为 S1 站位 初始输入波,其表达式为(Zheng *et al*, 2001):

$$\xi(s, x=0) = -\xi_0 \sec h^2(\frac{x-Vt}{\Delta}) \tag{11}$$

其中孤立波的波速和半波宽度分别为:

$$V = c + \frac{\alpha \xi_0}{3} \tag{12}$$

$$\Delta = \left(\frac{12\beta}{\alpha\xi_0}\right)^{1/2} \tag{13}$$

 ξ_0 为在 S1 站位输入波的初始振幅, 取为 170 m。 注意式(12)和(13)中的 α 、 β 和 c 分别由式(2)、(3)和(5)确定。

任意位置的等密度面铅直位移为:

$$(x,s,z) = \xi(x,s)\Phi(z)/\sqrt{Q(x)}$$
(14)

从 S1 站位输入孤立子, 经过 S1-S7 站位的传播, 在 S7 站位 50 m 水深处模拟结果如图 5 所示。

任意位置的垂直流速为:

n

$$w(x,s,z) = \frac{\Phi(z)}{\sqrt{Q(x)}} \frac{\partial \xi(x,s)}{\partial s}$$
(15)

依据二维不可压缩流体的连 续方程

$$\frac{\partial u(x,s,z)}{\partial z} + \frac{\partial w(x,s,z)}{\partial z} = 0 \qquad (16)$$

可求得内孤立波产生的水平流速 分布 *u*(*x*,*s*,*z*)。

为了便于对比,在此使用两 层流体的内孤立波模型模拟 S7 站 位主孤立子。由图 3 可以看出 S7 站位的密度跃层深度约为 50 m。 两层流体的内孤立波模型的方程 为(Zheng *et al*, 2001):

$$\frac{\partial \eta_1}{\partial t} + c_1 \frac{\partial \eta_1}{\partial x} + \alpha_1 \eta_1 \frac{\partial \eta_1}{\partial x} + \beta_1 \frac{\partial^3 \eta_1}{\partial x^3} = 0$$
(17)

其中 $\eta_1(x,t)$ 为两层流体间界面的 垂直位移, c_1 为线性相速度, α_1 为 非线性系数, β_1 为频散系数,分别 定义如下:

$$c_{1} = \left[\frac{g(\rho_{2} - \rho_{1})h_{1}h_{2}}{\rho_{2}h_{1} + \rho_{1}h_{2}}\right]^{1/2}$$
(18)

$$\alpha_1 = \frac{3}{2} \frac{c_1}{h_1 h_2} \frac{\rho_2 h_1^2 - \rho_1 h_2^1}{\rho_2 h_1 + \rho_1 h_2}$$
(19)

$$\beta_1 = \frac{c_1 h_1 h_2}{6} \frac{\rho_1 h_1 + \rho_2 h_2}{\rho_2 h_1 + \rho_1 h_2} \tag{20}$$

上式中 h_1 =50m, h_2 =250m, ρ_1 =1022.5kg/m³, ρ_2 =1025.2kg/m³。

方程(17)的解为如下形式:

C

$$\eta_1 = \eta_0 \sec h^2 \left[\frac{x - V_1 t}{\Delta_1} \right]$$
(21)

其中内孤立波速度和半波宽度分别为:

图 5 S7 站位 50m 水深处内孤立波模拟结果

Fig.5 The simulation results of the internal solitary waves at 50m depth at station S7

$$\Delta_{\rm l} = \left(\frac{12\beta_{\rm l}}{\alpha_{\rm l}\eta_{\rm 0}}\right)^{1/2} \tag{23}$$

其中 η_0 为两层模型模拟 S7 站位内孤立波输入波的初 始振幅。为了与上述连续分层模型模拟结果对比,取 $\eta_0=91.0$ m。注意式(22)和(23)中的 c_1 、 α_1 和 β_1 分别由 式(18)、(19)和(20)确定。

按照上述两层流体的内孤立波模型模拟 S7 站位 的主孤立子,模拟结果见图 5。表 2 分别给出了两种 模型模拟的主孤立子的相关参数值,后文中所言半 波宽度也均针对于主孤立子。其中的 V和A分别由式 (12)和(13)按 GK-dV 方程模型模拟的 S7 站位 50 m 深 处相应参数值计算得到,V₁和A₁分别由式(22)和(23) 按两层模型模拟的 S7 站位相应参数值计算得到。通 过与观测值(Liu *et al*, 2004; Ramp *et al*, 2004)对比, 易见使用两层流体的内孤立波模型模拟的内孤立波 半波宽度远小于观测值,而使用连续分层海洋的 GK-dV 方程模型模拟的内孤立波半波宽度接近于观 测值,对于内孤立波波速的模拟结果同样如此。

表 2 使用两种模型模拟的 S7 站位主孤立子参数值的对比 Tab.2 The comparison of simulated parameters of the first soliton between two models at station S7

模 型	振幅(m)	内孤立波波速 (m/s)	半波宽度(m)
连续分层模型	(η)91.0	(V)1.35	(Δ)262.0
两层模型	(<i>η</i> ₁)91.0	$(V_1)1.79$	(Δ ₁)107.1

3 内孤立波 SAR 遥感的仿真模拟

3.1 基于两层流体内孤立波模型的 SAR 遥感仿真 模型(简称传统模型)

Zheng 等(2001)给出了基于两层海洋模型的内孤 立波 SAR 遥感仿真模型, 其主要表达式为:

$$\sigma_{oIW} = Q_s(k_0, g_{ij}, \theta) \left(\frac{c_1 \eta_0 \cos^2 \varphi}{h_1 \Delta_1 \omega} \right)$$

$$\cdot tgh \left[\frac{(x - V_1 t)}{\Delta_1} \right] \sec h^2 \left[\frac{(x - V_1 t)}{\Delta_1} \right]$$
(24)

其中:

$$Q_{s}(k_{0}, g_{ij}, \theta) = 16\pi k_{0} \left|g_{ij}\right|^{2} m_{3}^{-1} k^{-4}$$
(25)

$$g_{HH}(\theta) = \frac{(\varepsilon_r - 1)\cos^2\theta}{\left[\cos\theta + (\varepsilon_r - \sin^2\theta)^{1/2}\right]^2}$$
(26)

$$g_{VV}(\theta) = \frac{(\varepsilon_r - 1)[\varepsilon_r (1 + \sin^2 \theta) - \sin^2 \theta) \cos^2 \theta}{[\varepsilon_r \cos \theta + (\varepsilon_r - \sin^2 \theta)^{1/2}]^2}$$
(27)

上式中 σ_{oIW} 表示海洋内波雷达图像特征,即海洋内波 所致雷达后向散射截面; θ 为雷达波的入射角; k_0 为雷 达波的波数;k为 Bragg 波的波数,表达式为 $k=2k_0 \sin(\theta)$; ω 为海洋表面波的角频率,其表达式为 $\omega^2 = (gk + \frac{T}{\rho_0}k^3) \tanh(kH)$,其中T为表面张力,H为 局地水深, ρ_0 为海水参考密度; φ 为海洋表面波的方向; ε_{γ} 为海水的相对介电常数; m_3 为系数;而 g_{HH} 和 g_{VV} 分 别为水平极化和垂直极化的散射系数。

取 θ=30°, φ=0°, m_3 =0.1, 其余参数取为前文两层 模型对应值, 分别针对 X、C 和 L 波段雷达波进行内 孤立波 SAR 遥感成像强度的仿真模拟。图 6a 和图 6b 分别为传统模型在 HH 和 VV 极化方式下的仿真结果, 其纵坐标为Δ $σ_{oIW}$, 其中Δ $σ_{oIW} = (\sigma_{oIW} - \sigma_{oIW})/ \sigma_{oIW}$, σ_{oIW} ,为海洋内波所致雷达后向散射截面, σ_{oIW} 为平 均海面后向散射截面。X、C 和 L 波段的波长和介电 常数分别为:

X 波段: λ_x =0.03m, ε_{rx} =49-35.5*i* C 波段: λ_c =0.0566m, ε_{rc} =60-36*i*

L 波段: λ_L =0.2350m, ε_{rL} =72–59*i*

图 6 传统内孤立波 SAR 遥感仿真模型在 HH (a) 和 VV (b) 极化方式仿真模拟结果

Fig.6 The simulation results of the SAR image intensity of internal solitary waves using the traditional model for HH polarization(a) and for VV polarization (b)

3.2 基于连续分层海洋模型的内孤立波 SAR 遥感仿 真模型(简称新模型)

Fan 等(2008a,b) 在前人工作的基础上提出和发展了陆架海域内孤立波的 SAR 遥感模型,其主要思想是把海洋进行连续分层,并在海洋表面毛细重力 波的波作用量平衡方程中考虑内孤立波引起的湍流 所致的波作用量。在此把对海洋进行连续分层的思想 引入 Zheng等(2001)提出的内孤立波 SAR 遥感成像仿 真模型中,给出内孤立波所致雷达后向散射截面的 表达式:

$$\sigma_{oIW} = 16\pi k_0^4 \left| g_{ij}(\theta) \right|^2 \psi_{IW}(0, 2k_0 \sin \theta)$$
(28)

由 Zheng 等(2001)知:

$$\psi_{IW}(0, 2k_0 \sin \theta) = -S_{\alpha\beta} \frac{\partial U_\beta}{\partial x_\alpha} m_3^{-1} \omega^{-1} k^{-4} \qquad (29)$$

但是这里的 U 不同于 Zheng 等(2001)中的 U, Zheng 等(2001)中的 U 是基于两层海洋模型求得的, 而这里的 U 是基于连续分层海洋模型求得的。所以, 基于连续分层海洋模型的内孤立波 SAR 遥感成像仿 真模型为:

$$\sigma_{0IW} = 16\pi k_0^4 \left| g_{ij}(\theta) \right|^2 \left(-S_{\alpha\beta} \frac{\partial U_\beta}{\partial x_\alpha} m_3^{-1} \omega^{-1} k^{-4} \right) \quad (30)$$

其中:

$$S_{\alpha\beta} \frac{\partial U_{\beta}}{\partial x_{\alpha}} = \begin{bmatrix} \frac{\partial u}{\partial x} \cos^2 \varphi + (\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}) \cos \varphi \sin \varphi + \frac{\partial v}{\partial y} \sin^2 \varphi \end{bmatrix} / 2$$
(31)

式(31)中 u 和 v 为内孤立波所致海面表层水平流速的 2 个分量,即 U=(u,v)。在简单的情况可取 v=0 并且 u由式(16)求得。图 7a 和图 7b 分别为新模型在 HH 和 VV 极化方式下的仿真模拟结果,其纵坐标为 $\Delta \sigma_{oIW}$, 其中 $\Delta \sigma_{oIW} = (\sigma_{OIW} - \sigma_{oIW}) / \sigma_{oIW}$, σ_{oIW} 为海洋内波 所致雷达后向散射截面, σ_{oIW} 为平均海面后向散射 截面。

分别对比图 6—7,可以发现新模型无论在 HH 还 是 VV 极化方式下,均不能解决在高波段(X 波段和 C

图 7 内孤立波 SAR 遥感仿真新模型在 HH (a) 和 VV (b) 极化方式仿真模拟结果

Fig. 7 The simulation results of the SAR image intensity of internal solitary waves using the new model for HH polarization (a) and VV polarization (b)

波段)对海洋内波动力学特性的雷达特征的一般性低 估问题。表 3 为两种 SAR 遥感仿真模型模拟的半波 宽度和相对误差表。半波宽度根据参考文献 Zheng 等 (2001)中的式 $d_{p-p} \approx 1.32\Delta$ (其中 d_{p-p} 为在内孤立波的 雷达后向散射截面曲线中正峰和负峰之间的距离)计 算而来。相对误差是分别相对于表 2 中两种模型模拟 得到的半波宽度结果而估计的误差。由于两层海洋 SAR 遥感仿真模型本身的缺陷,导致传统模型仿真 的半波宽度相对误差比较大,高达 34.2%,而基于连 续分层海洋模型的新的 SAR 遥感仿真模型得到的半 波宽度误差比较小,仅为 4.0%。

4 结论

在本文中,建立了一种新的基于连续分层海洋 模型的内孤立波 SAR 遥感仿真模型。通过与基于两

表 3 两种 SAR 遥感仿真模型模拟的半波宽度及其相对误差 Tab.3 The simulated half widths and their relative errors by using two model

而日	传统模型仿真的半波宽度(m)			新模型仿真的半波宽度(m)		
项 日 -	X 波段	C 波段	L 波段	X 波段	C 波段	L波段
HH 极化	143.7	143.7	143.7	251.5	251.5	251.5
VV 极化	143.7	143.7	143.7	251.5	251.5	251.5
相对误差	34.2%	34.2%	34.2%	4.0%	4.0%	4.0%

层海洋模型的内孤立波 SAR 遥感仿真模型模拟结果的对比,证明其正确性和优越性。主要内容总结如下 几点:

(1)建立了一种新的基于连续分层海洋模型的 内孤立波 SAR 遥感仿真模型,其表达式为:

$$\sigma_{oIW} = 16\pi k_0^4 \left| g_{ij}(\theta) \right|^2 \left(-S_{\alpha\beta} \frac{\partial U_\beta}{\partial x_\alpha} m_3^{-1} \omega^{-1} k^{-4} \right) \quad (32)$$

其中的内孤立波所致海面表层水平流速 U是由式(16) 求得。

(2) 基于新模型,改进了内孤立波 SAR 遥感仿真 半波宽度的准确度和精度。

参考文献

- 石新刚, 范植松, 李培良, 2009. 正压潮流对南海东北部深水 海域大振幅内孤立波数值模拟的影响. 中国海洋大学学 报(自然科学版), 39(Sup.): 297—302
- 刘海龙, 俞永强, 李 薇等, 2004. LASG/IAP 气候系统海洋模式(LICOM1.0)参考手册. 北京: 科学出版社, 107
- 柯自明, 尹宝树, 徐振华等, 2009. 南海文昌海域内孤立波特 征观测研究. 海洋与湖沼, 40(3): 269—274
- Beardsley R C, Duda T F, Lynch J F et al, 2004. Barotropic tide in the Northeast South China Sea. IEEE J Oceanic Engineering, 29(4): 1075—1086
- Fan Z S, Zhan Y L, Song M, 2008a. A study of SAR remote sensing of internal solitary waves in the north of the South China Sea: I. Simulation of internal tide transformation. Acta Oceanologica Sinica, 27(4): 39–56

- Fan Z S, Zhan Y L, Song M, 2008b. A study of SAR remote sensing of internal solitary waves in the north of the South China Sea: II. Simulation of SAR signatures of internal solitary waves. Acta Oceanologica Sinica, 27(5): 36–48
- Holloway P E, Pelinovsky E, Talipova T *et al*, 1997. A nonlinear model of internal tide transformation on the Australian North West Shelf. J Phys Oceanogr, 27: 871—896
- Klymak M J, Pinkel R, Liu C T *et al*, 2006. Prototypical solitons in the South China Sea. Geophys Res Lett, 33: L11607
- Liu A K, Ramp S R, Zhao Y-H et al, 2004. A case study of internal solitary wave propagation during ASIAEX 2001. IEEE J Oceanic Engineering, 29(4): 1144—1156
- Liu H L, Li W, Zhang X-H, 2005. Climatology and variability of the Indonesian Throughflow in the eddy-permitting oceanic GCM. Advances in Atmospheric Sciences, 22(4): 496—508
- Provost Le C, Lyard F, MOlines J M et al, 1998. A hydrodynamic ocean tide model improved by assimilating a satellite altimeter-drived data set. Journal of Geophysical Research, 103(C3): 5513—5529
- Ramp S R, Tang T Y, Duda T F et al, 2004. Internal solitons in the Northeastern South China Sea. Part I : sources and deep water propagation. IEEE J Oceanic Engineering, 29(4): 1157—1181
- Shi X-G, Fan Z-S, Liu H-L, 2009. A numerical calculation method of eigenvalue problem of nonlinear internal waves. Journal of Hydrodynamics, Ser B, 21(3): 373–378
- Zheng Q, Yuan Y, Klemas V et al, 2001. Theoretical expression for an ocean internal soliton synthetic aperture radar image and determination of the soliton characteristic width. J Geophys Res, 106(C11): 31415–31423

SIMULATION OF SAR SIGNATURES OF LARGE-AMPLITUDE INTERNAL SOLITARY WAVES IN THE DEEP SEA IN THE NORTHEAST SOUTH CHINA SEA

SHI Xin-Gang¹, FAN Zhi-Song², SI Zong-Shang²

Beijing branch of CNOOC Energy Technology & Services Limited, Beijing,100027;
 College of Physical and Environmental Oceanography, Ocean University of China, Qingdao, 266100)

Abstract In order to improve the simulation results of the SAR (Synthetic aperture radar) signatures on the basis of two-layer oceanic model, the simulation of the propagation of the large-amplitude internal solitary waves in the deep northeast South China Sea was made based on a continuous stratified oceanic model using the GK-dV equation, the simulation results of the amplitude and half-width of internal solitary wave were 91.0 m, 262.0 m respectively. The simulation of the SAR signatures of the large-amplitude internal solitary waves was also made, the simulation of half-width is 251.5 m, relative error was only 4.0%, far less than the relative error of 34.2% based on the traditional model.

Key words SAR remote sensing, Internal solitary waves, Continuous stratified oceanic model, Half width, South China Sea