体重和温度对华贵栉孔扇贝(Chlamys nobilis) 耗氧率和排氨率的影响^{*}

栗志民 刘志刚 谢 丽 汤健聪

(广东海洋大学 湛江 524025)

提要 采用室内实验生态学方法对华贵栉孔扇贝的耗氧率和排氨率进行了研究。旨在为华贵栉孔 扇贝养殖容量的调查及生态生理的研究提供参考,并可为海洋生态系统动力学和贝类能量学研究提 供科学依据。实验结果表明,在实验温度(13—33)范围内,华贵栉孔扇贝的耗氧率(*OR*)和排氨率 (*NR*)与体重(*W*)都呈负相关,可以用 $Y = aW^{-b}$ 表示。华贵栉孔扇贝的耗氧率和温度的关系可以表示为 *OR* = $-c + b_1T - b_2T^2$ 。在 13—28 温度范围内,华贵栉孔扇贝的耗氧率随温度的升高而增加,28 时,耗氧率达到最大值,温度升高到 33 时,耗氧率反而下降。而排氨率与温度的关系可以表示为 *NR* = $c_1e^{d_1T}$,在实验温度范围内,排氨率随温度的升高则呈持续升高趋势。华贵栉孔扇贝呼吸和排泄 Q_{10} 值范围分别为 0.466—2.471 和 1.129—2.437。在 23—28 温度范围内,不同规格华贵栉孔扇贝的 耗氧率和排氨率的比值(原子数 O:N)较高。方差分析表明,体重、温度及二者的交互作用对华贵栉 孔扇贝的耗氧率和排氨率均有极显著的影响(*P*<0.01)。华贵栉孔扇贝的日常代谢明显高于标准代谢, 耗氧率和排氨率平均值分别提高 29.9%和 69.4%。

关键词 华贵栉孔扇贝, 耗氧率, 排氨率, 体重, 温度 中图分类号 Q493

呼吸与排泄是贝类新陈代谢的基本生理活动, 也是贝类能量学、贝类养殖容量研究及评价贝类对海 洋生态系统影响的重要内容。它既反映了贝类的生理 活动,也反映了环境条件对贝类生理活动的影响。生 物的代谢受各种外部和内部因素的影响,其中体重 和水温是影响贝类耗氧率和排氨率的重要因素。贝类 的排泄产物主要有氨、尿酸、尿素和氨基酸等,其中 氨占总排泄物的 70%或更高(Carfoot, 1987; Griffiths *et al*, 1987),研究氨的排泄从而推测新陈代谢组分以 了解生物的生理状况具有重要意义。有关贝类的呼吸 和排泄一直为国内外研究的热点,国外在这方面的 研究始于 20 世纪 70 年代后期,而国内在 80 年代也 开始了这方面的研究。30 多年来,有关贝类的呼吸和 排泄的研究有了大量报道(杨红生等, 1998; 孟学平等, 2005; Saucedo *et al*, 2004; Ahmed *et al*, 2008; Bayne *et al*, 1983)。

华贵栉孔扇贝[Chlamys nobilis (Reeve)]隶属于软 体动物门(Mollusca)、瓣鳃纲(Lamellibranchia)、翼形 亚纲(Ptermorphia)、珍珠贝目(Pterioida)、扇贝科 (Pteriidae),是热带、亚热带的海产经济贝类,主要分 布日本的本州、四国和九州,印度尼西亚和南海。因 其营养丰富、肉质鲜美,在我国南方海域广泛养殖。 目前对华贵栉孔扇贝的研究主要集中在幼体培育、稚 贝和成贝海区养殖(金启增等,1991;L-m et al,1995)、 多倍体育种(L-m et al,1995; 林岳光等,1995)和种间 杂交育种(曾志南等,1995;万俊芬等,2004)等方面, 对其呼吸与排泄的研究却较少报道。本文报道体重、 水温和摄食状态对华贵栉孔扇贝耗氧率和排氨率的

^{*} 广东省海洋与渔业科技专项, A200708D02 号。栗志民, 博士, E-mail:lizhimin811@163.com 通讯作者:刘志刚,教授, E-mail:lzg919@21cn.com 收稿日期: 2008-12-18, 收修改稿日期: 2009-02-17

影响,为华贵栉孔扇贝养殖容量的调查及生态和生 理的研究提供参考,同时为海洋生态系统修复技术 的研究提供科学依据。

1 材料与方法

1.1 材料

华贵栉孔扇贝(*Chlamys nobilis*)6 种规格(表 1)于 2008 年 10 月取自广东省湛江市雷州覃斗镇近海华贵 栉孔扇贝养殖区不同批次养殖群体,实验贝取回后 挑选健康、无损伤个体,用毛刷洗刷去除表面的附着 物,重新装笼后吊养于广东海洋大学水产经济无脊 椎动物实验室,暂养期间海水盐度为 24.5—25.5,水 温为 23.6—24.8 ,pH 8.12—8.35,溶解氧>5mg/L, 24h 充气,每天投喂小球藻(*Chlorella* sp.)和亚心形扁 藻[*Platymonas subcordiformis* (Wille) Hazen]。

1.2 方法

1.2.1 实验方案 华贵栉孔扇贝暂养两周后根据 壳长分成 A、B、C、D、E 和 F 六组(表 1)进行实验。 实验设置 13 、18 、23 、28 、33 5 个温度 梯度,每个温度梯度组设置 3 个平行和 1 个空白对 照。各梯度温度是在实验贝放进各预设温度组后从常 温 24 开始,通过每日升降 1—2 而获得。实验贝 在各温度组中稳定 3 天后开始实验。贝类的代谢可分 为标准代谢、活动代谢和日常代谢 3 个水平,本研究 包括标准代谢和日常代谢。标准代谢在停食 24h 后进 行,以 2.5L 大口瓶为呼吸瓶,每瓶放贝 3 个,加入砂 滤海水后用橡胶塞密封,以贝壳张开为起点计时,持 续 1.5—2h,实验前后测定呼吸瓶中水样的溶解氧 (D.O)和 NH4⁺-N 含量。日常代谢则是直接测定处于摄 食状态下华贵栉孔扇贝的代谢率,方法同上。

1.2.2 数据采集方法 D.O 的测定采用 Winkler 碘 量法, NH₄⁺-N 则采用次溴酸钠氧化法。生物学测定在 实验结束后进行,用游标卡尺测定实验贝的壳长和 壳高(mm), 然后剖取软体部于 70 下烘干至恒重,用 SARTORIUS-BS110S 电子天平称其干重(g)。

1.2.3 计算方法 根据实验前后呼吸瓶内水中的 D.O 和 NH₄⁺-N 的浓度,按下列各式计算华贵栉孔扇 贝的耗氧率(*OR*)、排氨率(*NR*)、 Q_{10} 值和 O/N 值。

$OR = [(DO_0 - DO_t) \times V] / (W \times t)$

式中, *OR* 为单位体重耗氧率[mg/(g·h)], *DO*₀和 *DO*_t 为 实验开始和结束时水中的 D.O 含量(mg/L), *V* 为呼吸 瓶中水的体积(L), *W* 为华贵栉孔扇贝软体部干重(g), *t* 为实验持续时间(h)。

$NR = \left[(N_t - N_0) \times V \right] / (W \times t)$

式中, *NR* 为单位体重排氨率[mg/(g · h)], N_0 和 N_t 为实 验开始和结束时水中 NH₄⁺-N 的浓度(mg/L), *W* 为华 贵栉孔扇贝软体部干重(g), *t* 为实验持续时间(h)。

$$Q_{10} = \left(\frac{M_2}{M_1}\right)^{\frac{10}{(t_2 - t_1)}}$$

式中, Q_{10} 为温度对贝类代谢影响强度, M_1 和 M_2 分别 为实验温度(t_1)和实验温度(t_2)时华贵栉孔扇贝的代谢 率 OR 或 NR。

O/N = OR / NR

式中, O/N 为华贵栉孔扇贝耗氧率和排氨率之间的比值, OR 为单位体重耗氧率[mg/(g · h)], NR 为单位体重 排氨率[mg/(g · h)]。

1.2.4 数据分析方法 实验数据为 3 个平行组的 平均值,以平均值±标准差(Means ± Standard Error)表 示,并采用 Excel 和 SPSS 13.0 软件处理。

2 结果与分析

2.1 华贵栉孔扇贝体重与耗氧率和排氨率的关系

在 5 个实验温度下,随着体重(软体部干重)的增加,华贵栉孔扇贝的耗氧率和排氨率都降低(图 1), 呈负相关的幂函数关系,耗氧率和排氨率与体重的 关系可分别表示为 $Y_1 = a_1 W^{-b_1}$ 和 $Y_2 = a_2 W^{-b_2}$,其回 归方程的参数及相关系数见表 2。其中, a_1 的取值范 围是 1.587—3.521, b_1 的取值范围是 0.441—0.539, a_2 的取值范围是 0.199—0.494, b_2 的取值范围是 0.472— 0.572。

Tab.1 The biological measurement of C. nobilis									
生物学特征 -									
	А	В	С	D	Е	F			
売长(mm)	23.87 ± 1.362	33.86 ± 1.579	41.25 ± 1.393	52.46 ± 2.152	64.28 ± 2.401	73.92 ± 1.643			
干重(g)	0.24 ± 0.013	0.52 ± 0.082	1.14 ± 0.135	2.05 ± 0.247	3.19 ± 0.251	4.15 ± 0.306			

表1 华贵栉孔扇贝的生物学测定

Fig.1 Relationship of body weight with oxygen consumption rate and ammonia excretion rate of C. nobilis

Tab.2 Regression between metabolism rates and the body weight of <i>C. nobilis</i>									
温度() —		耗氧率	簳(OR)			排氨率(NR)			
	a_1	b_1	R^2	n	a_2	b_2	R^2	n	
13	1.587	0.539	0.957	54	0.199	0.572	0.944	54	
18	2.422	0.526	0.954	54	0.257	0.567	0.945	54	
23	3.128	0.469	0.946	54	0.314	0.542	0.939	54	
28	3.521	0.441	0.948	54	0.337	0.521	0.928	54	
33	3.108	0.455	0.947	54	0.494	0.472	0.918	54	

表 2 华贵栉孔扇贝体重与代谢率的回归结果 gression between metabolism rates and the body weight of *C*

2.2 水温对华贵栉孔扇贝耗氧率和排氨率的影响

如图 2 所示,水温对华贵栉孔扇贝的耗氧率和排 氨率影响明显,在13—28 ,耗氧率随着温度的升高 而增加,在 28 达到最大值,当温度超过 28 时,耗 氧率反而下降, 耗氧率和温度之间的关系可以用二次曲线 $OR = -c + b_1 T - b_2 T^2$ 表示, 其主要参数及相关 系数见表 3; 而排氨率在实验温度范围内(13—33)则呈现持续升高的趋势, 可以用指数函数 $NR = c_1 e^{d_1 T}$

Fig.2 Relationship of water temperature with the rates of oxygen consumption and ammonia excretion of *C. nobilis*

表 3 华贵栉孔扇贝温度与耗氧率的回归结果 Tab.3 Regression between oxygen consumption rates and water temperature for *C. nobilis*

实验分组	с	b_1	b_2	R_2	n
А	3.781	0.700	0.013	0.952	54
В	3.450	0.582	0.010	0.994	54
С	2.759	0.441	0.066	0.984	54
D	2.913	0.398	0.007	0.960	54
Е	1.469	0.202	0.005	0.953	54
F	2.195	0.300	0.005	0.963	54

Tab 5

表 4 华贵栉孔扇贝温度与排氨率的回归结果

Tab.4	Regression between ammonia excretion rates and water
	temperature for <i>C</i> nobilis

	1			
实验分组	c_1	d_1	R^2	n
А	0.262	0.033	0.955	54
В	0.194	0.038	0.950	54
С	0.122	0.044	0.941	54
D	0.072	0.052	0.961	54
Е	0.060	0.044	0.924	54
F	0.040	0.046	0.952	54

表示, 其主要参数及相关系数见表 4。水温对华贵栉 孔扇贝代谢影响强度(Q_{10})研究结果表明, 水温对耗 氧率和排氨率的影响均显著, 实验温度范围内, 呼吸 Q_{10} 值的范围 0.475—2.464, 排泄 Q_{10} 值的范围 1.129 —2.437(表 5)。由表 6 可以看出, 不同大小的华贵栉 孔扇贝个体 O/N 值为 5.726—12.289, 且在 28 时, O/N 值达最大值。

2.3 体重和水温对华贵栉孔扇贝耗氧率和排氨率的 综合影响

如表 7 所示,方差分析表明,体重、水温双因子 及二者的交互作用对华贵栉孔扇贝耗氧率和排氨率 均有极显著的影响(*P*<0.01)。

2.4 华贵栉孔扇贝的日常代谢

如表 8 所示,在水温 23 条件下,华贵栉孔扇贝的日常代谢明显高于标准代谢,其中耗氧率平均增加约 29.9%,排氨率平均增加约 69.4%。

3 讨论

3.1 体重对华贵栉孔扇贝耗氧率和排氨率的影响

自从 Winberg(1956)提出动物的代谢率与体重的 关系模型以来,此关系式已在许多动物中发现。许多 学者的研究表明,贝类的耗氧率和排氨率与体重的 关系可表示为 $Y = aW^{-b}$,其中系数 a 变化较大,这不

表 5 水温对华贵栉孔扇贝代谢率的影响强度 The extent of temperature influence on metabolism rate of *C* nabilis (*O*₁₀)

10.5 The extent of temperature influence on inclusions rate of <i>e. nobuls</i> (\underline{g}_{10})												
泪底()	耗氧率 <u>Q</u> 10						排氨率 Q ₁₀					
	А	В	С	D	Е	F	А	В	С	D	Е	F
13—18	1.711	1.626	2.056	1.909	2.076	2.464	1.223	1.129	1.329	1.344	1.167	1.944
18—23	1.980	2.069	2.432	2.471	1.463	1.855	1.862	2.036	2.406	2.359	1.301	1.190
23—28	1.521	1.836	1.649	1.810	2.458	2.039	1.351	1.682	1.557	1.597	2.272	1.656
28—33	0.618	0.527	0.475	0.528	0.466	0.775	1.749	1.535	1.556	1.934	2.164	2.437

103

	Tab.6 The O/I	N ratios of oxygen c	consumption rates v	s ammonia-N excret	ion rates of C. nobi	lis
温度() ——			0	/ N		
	А	В	С	D	Е	F
13	7.822	7.435	7.911	8.735	7.7241	8.605
18	9.154	9.087	9.211	8.876	11.413	9.556
23	9.539	9.186	9.236	10.220	11.749	11.068
28	9.970	9.423	9.967	10.357	12.289	12.132
33	6.768	5.865	5.726	5.925	6.926	6.812

表 6 华贵栉孔扇贝呼吸氧原子数与排出氨氮原子数的比值(O/N) ab.6 The O/N ratios of oxygen consumption rates vs ammonia-N excretion rates of *C. nobil*

表 7 体重和水温对华贵栉孔扇贝代谢率影响的双因子方差分析 Tab.7 The ANOVA of metabolism rate of *C. nobilis* with bodyweight and water temperature

代谢率	方差来源	SS	df	MS	F	Р	$F_{0.01}$
耗氧率	体重	147.717	5	29.543	245.273	0.000	3.34
	水温	38.595	4	9.649	80.106	0.000	3.65
	体重×水温	5.688	20	0.284	2.361	0.006	2.20
	误差	7.227	60	0.120			
	总计	881.178	89				
排氨率	体重	2.383	5	0.477	168.734	0.000	3.34
	水温	0.868	4	0.217	76.826	0.000	3.65
	体重×水温	0.126	20	0.006	2.240	0.009	2.20
	误差	0.169	60	0.003			
	总计	13.202	89				

表 8 华贵栉孔扇贝的标准代谢和日常代谢[mg/(g·h)] Tab 8 Standard and routing metholism [mg/(g h)] of *C*, nobil

Tab.o Standard and fourne metabolism [mg/(g·n)] of C. <i>Robiti</i>								
抑枚	标准代谢	(平均值)	日常代谢	日常代谢(平均值)				
7儿1日	OR	NR	OR	NR				
А	5.571	0.584	6.212	0.805				
В	4.391	0.478	5.369	0.618				
С	3.168	0.343	4.201	0.586				
D	2.504	0.245	3.657	0.472				
Е	1.962	0.167	3.147	0.428				
F	1.306	0.118	1.969	0.368				

但与种的特异性有关,还与研究者测定耗氧率和排 氨率时的温度、盐度等环境条件以及所采用的计算体 重的方式不同等因素有关。有些作者在计算体重时用 活体重(Carefoot, 1989),有的用湿肉重、总干重(Paine, 1971),有的用干肉重(Macdonatd, 1988;朱爱意等, 2007),甚至有作者同时采用活体重、总干重和干肉重 来表达(常亚青等, 1992),从而导致*a* 值变化较大。本 实验采用软体部干重建立华贵栉孔扇贝耗氧率(Y_1)和 排氨率(Y_2)的回归关系,结果均呈 $Y_1 = a_1 W^{-b_1}$ 和 $Y_2 = a_2 W^{-b_2}$ 的负相关幂函数关系。随着温度的升高,系数 a_1 逐步增大,在28 时达最大值,说明在适宜的温度 范围内,温度的升高使得华贵栉孔扇贝的耗氧率增 大,这与对魁蚶(*Scapharca broughtoni*)(常亚青等, 1992)、海湾扇贝(*Argopecten irradians*)(都亚威等, 1993)、太平洋牡蛎(*Crassostrea gigas*)(Bougrier *et al*, 1995)的研究结果相似,而与对墨西哥湾扇贝 (*Argopecten irradians concentricus*)(杨红生等, 1998)、 食用牡蛎(*Ostrea edulis*)(Hutchinson *et al*, 1992)的研究 结果有差别。随着温度的升高,*a*2 呈增大趋势,说明 排氨率随着温度的升高而增加,这与王俊等(2002)对 栉孔扇贝(*Chlamys farreri*)的研究结果相似。

回归式中的 *b* 表示体重指数, 变动范围较小, Bayne 等(1983)给出 23 种贝类的 *b* 值为 0.44—1.09, 平均为 0.75。*b* 值存在的差异性是由于贝类自身生物 学特性造成的。本实验中, 华贵栉孔扇贝 *b*₁ 的取值范 围是 0.441—0.539, 平均值为 0.486, *b*₂ 的取值范围是 0.472—0.572, 平均值为 0.535, 均低于上述研究结果, 但在正常范围内。这与王俊等(2002)对栉孔扇贝的研 究和王芳等(1998)对菲律宾蛤仔(*Ruditapes philippi-narum*)的研究结果相似。

3.2 温度对华贵栉孔扇贝耗氧率和排氨率的影响 贝类是变温动物,温度的波动是引起贝类生理 活动变化的重要因素之一, 许多研究表明, 在适宜的 温度范围内, 贝类的代谢率随温度的升高而增加, 超 出这个范围, 贝类的代谢则出现异常(王俊等, 2002)。 从本研究结果看,在标准代谢下,在13-28 范围内, 华贵栉孔扇贝耗氧率随温度的升高而增加,在28 时达到最大值,33 下的耗氧率小于28 ,说明33 已超出了华贵栉孔扇贝的适温范围,从而对华贵栉 孔扇贝的呼吸代谢产生抑制作用(图 2)。 Q10 表示温度 变化对代谢强度的影响,双壳贝类的 Q_{10} 范围一般介 于 1.0—2.5 之间或稍高, 平均值为 2.0 (Wilber et al, 1989; Clark et al, 1990)。从本实验结果来看, 13—28 范 围内的呼吸 Q_{10} 值和排泄 Q_{10} 值的范围分别是 1.463— 2.471 和 1.129-2.406, 虽平均值稍低于 2.0, 但属正 常范围(表 3)。由于 33 超出了华贵栉孔扇贝的适温 范围(王如才等, 2008), 因而出现了耗氧率降低和排 氨率显著增加的现象, Q_{10} 值也反映了这一点。

氧氮比(O/N)表示动物呼吸底物的重要参数,是 生物体内蛋白质与脂肪和碳水化合物分解代谢的比 率。O/N 比值大表明动物消耗的能量较少部分由蛋白 质提供,多数由脂肪和糖类提供(姜祖辉等,1999)。生 物在正常生长期间,蛋白质不断积累,此时蛋白质的 代谢相对较低。因此,通过 O/N 能够估计动物代谢中 能源物质的化学本质。Mayzalld(1976)提出,如果完 全由蛋白质氮提供能量, O/N 约为 7。Ikeda(1974)认为, 如果是蛋白质和脂肪氧化供能, O/N 约为 24。Conover 等(1968)指出,如果主要由脂肪或碳水化合物供能, O/N 将由此变为无穷大。本实验结果表明,在 23---28 的温度范围内, 各组华贵栉孔扇贝个体 O/N 较 高, 表明在最适的温度范围内, 华贵栉孔扇贝的代谢 物质以蛋白质为主, 脂肪和碳水化合物次之。但随着 温度的进一步升高(33),华贵栉孔扇贝的耗氧率下 降, 排氨率却进一步升高, 致使 O/N 降到 7 以下。由 此可见, 高温会进一步提高蛋白质的代谢水平。虽然, 有研究认为, O/N 值的大小不能完全表明生物有机体 的生长速率,但很多迹象表明,O/N 值可以作为生物 体适应环境压力的一项指标(Widdows, 1978)。因此根 据 O/N 值进一步证实华贵栉孔扇贝的最适生长温度 为 23—28。

3.3 活动水平对华贵栉孔扇贝耗氧率和排氨率的 影响

贝类的活动对耗氧率和排氨率的影响较大。与其 它动物类似,一些学者也将贝类的呼吸代谢分为标 准代谢亦即饥饿、相对静止状态的代谢和最大活动条 件下的活动代谢以及处于前两者之间的日常代谢 (Macdonatd, 1988)。活动代谢由于实验室条件难以测 到,故多为估测,而日常代谢则范围较大,主要取决 于贝类的活动强度。Navarro(1992)和 Winter(1969)的 研究表明,随滤水率的增加,贻贝的代谢率明显增大, 最高可达标准代谢的 4—5 倍。本研究中,华贵栉孔 扇贝 23 下日常代谢中的平均耗氧率提高约 29.9%, 平均排氨率增加约 69.4%,这一结果支持了 Navarro (1992)和 Winter(1969)的结论,以及常亚青等(1992)和 王俊等(2002)的实验结果。

参考文献

- 万俊芬,包振民,刘广绪,2004. 扇贝种间单对杂交一代幼虫 ISSR 标记的分离方式. 高技术通讯,(5): 82—87
- 王 芳, 董双林, 王 涛等, 1998. 菲律宾蛤仔呼吸和排泄规律的研究. 海洋科学, 2: 118—120
- 王 俊,姜祖辉,唐启升,2002.栉孔扇贝耗氧率和排氨率的 研究.应用生态学报,13(9):1157—1160
- 王如才, 王昭萍, 2008. 海水贝类养殖学. 青岛: 中国海洋大 学出版社, 186—187
- 朱爱意,谢佳彦,陈金海,2007. 温度和个体大小对单齿螺耗 氧率和排氨率的影响. 生态科学,26(3):232—236
- 杨红生,张 涛,王 萍等,1998. 温度对墨西哥湾扇贝耗氧 率及排泄率的影响. 海洋学报,20(4):91—96
- 林岳光,何毛贤,1995.华贵栉孔扇贝的三倍体诱导及生长比 较.热带海洋,14(4):84—89
- 金启增,郭澄联,1991.华贵栉孔扇贝生产性育苗高产试验. 热带海洋,10(3):8—15
- 孟学平,董志国,程汉良等,2005. 西施舌的耗氧率与排氨率 研究. 应用生态学报,16(12):2435—2438
- 郝亚威,杨小龙,毛兴华,1993.海湾扇贝呼吸的研究.黄渤 海海洋,11(1):37—43
- 姜祖辉,王 俊,唐启升,1999.菲律宾蛤仔生理生态学研究. 海洋水产研究,20(1):40—44
- 常亚青,王子臣,1992. 魁蚶耗氧率的初步研究.水产科学, 11(2):1---6
- 曾志南,陈 木, 1995. 华贵栉孔扇贝三倍体的研究. 台湾海 峡, 14(2): 155—162
- Ahmed F, Segawa S, Yokota M, 2008. Effect of light on oxygen consumption and excretion in *Haliotis discus discus*, *H. gigantea*, *H. madaka* and their hybrids. Aquaculture, 279: 160– 165
- Bayne B L, Newell R C, 1983. Physiological Energetics of Marine Molluscs. New York: Academic Press, 407—515
- Bougrier S, Geairon P, Deslous-Paoli J M et al, 1995. Allornetric relationships and effects of temperature on clearance and oxygen consumption rates of *Crassostrea gigas* (Thunberg). Aquaculture, 134: 143–154
- Carefoot T H, 1989. A comparison of time / energy budgeting in two species of tropical sea hares *Aplysia*. Exp Mar Biol Ecol,

131: 267-282

- Carfoot T H, 1987. Animal Energetics. New York: Academic Press, 89-172
- Clark B C, Griffiths C L, 1990. Ecological energetic of mussels *Choromytilus meridionalis* under simulated intertidal rock pool condition. J Exp Mar Biol Ecol, 137: 63-77
- Conover R J, Corner E D S, 1968. Respiration and nitrogen excretion by some marine zooplankton in relation to their life cycles. J Mar Biol Assoc UK, 48: 49–75
- Griffiths C L, Griffiths R J, 1987. Animal Energeties. New York: Academic Press, 2–88
- Hutchinson S, Hawkins L E, 1992. Quantification of the physiological responses of the European flat oyster *Ostrea edulis* L. to temperature and salinity. J Mol Stud, 58: 215–226
- Ikeda T, 1974. Nutrition ecology of marine zooplankton. Mem Fac Fish Res, 22: 1–77
- L-m Y G, Qing N, He M X *et al*, 1995. Triploid induction in the scallop, *Chlamys nobilis*. Supplement to the Journal of Sun Yatsen University, 3: 47–50
- Macdonatd B A, 1988. Physiological energetics of Japanese scallop Patinopecten yessoensis larvae. Exp Biol Ecol, 120: 155—170
- Mayzalld P, 1976. Respiration and nitrogen excretion of zoo-

plankton IV. The influence of starvation on the metabolism and biochemical composition of some species. Mar Biol, 37: 47—58

- Navarro J M, 1992. Nature sediment as a food source for the cockle *Cerastoderma edule*: Effects of variable particle concentration on feeding digestion and the scope for groeth. J Exp Mar Biol Ecol, 156: 69–87
- Paine R T, 1971. Energy flow in natural population of the herbivorous gastropod *Tegula funebralis*. Limno & Oceanogr, 16(1): 66–98
- Saucedo P E, Ocampo L, Monteforte M et al, 2004. Effect of temperature on oxygen consumption and ammonia excretion in the Calafia mother-of-pearl oyster, *Pinctada mazatlanica* (Hanley, 1856). Aquaculture, 229: 377–387
- Widdows J, 1978. Physiological indices of stress in *Mytilus* edulis. J Mar Biol Ass UK, 58: 125–142
- Wilber A E, Hilbish T J, 1989. Physiological energetics of the ribbed mussel *Geukensia dermissa* (Dillwyn) in response to increased temperature. J Exp Mar Biol Ecol, 131: 161–170
- Winter J E, 1969. Über den einflu der nahrungskon-zentration und ander faktoren auf filttrierleistung und nahrungsaus nutzung der muscheln Arctica islandica und Modiollus moodidus. Mar Biol, 4: 87—135

EFFECT OF BODY WEIGHT AND TEMPERATURE ON OXYGEN CONSUMPTION AND AMMONIA-N EXCRETION RATES OF CHLAMYS NOBILIS

LI Zhi-Min, LIU Zhi-Gang, XIE Li, TANG Jian-Cong

(Fisheries College of Guangdong Ocean University, Zhanjiang, 524025)

Abstract The rates of oxygen consumption and ammonia-N excretion of *Chlamys nobilis* were studied in laboratory, aiming at the investigation on carrying capacity for aquaculture of *C. nobilis*, and on the physiology of cultivating pearls and ocean ecosystem dynamics and shellfish energy. The results show that the oxygen consumption and ammonia-N excretion rates of *C. nobilis* were negatively correlated with the body weight in a power function in 13—33 , and the oxygen consumption rate increases with increasing water temperature at 13—28 , which reaches the maximum at 28 . The relationship between the ammonia-N excretion rate of *C. nobilis* is markedly positively correlated with temperature in a power function also in 13—33 . The respiratory and excretion Q_{10} range from 0.466—2.471 and 1.129—2.437, respectively. ANOVA shows that body weight, water temperature, and their interaction have significant effects on the oxygen consumption and ammonia-N excretion and ammonia-N excretion rates. Between 23—28 , higher O/N, much higher routine metabolism than the standard metabolism, and greater oxygen consumption and ammonia-N excretion rates by 29.9% and 69.4%, respectively were observed.

Key words Chlamys nobilis, Oxygen consumption rate, Aammonia-N excretion rate, Body weight, Temperature