海南岛洋浦港潮汐汊道口门的 均衡过水面积*

高 抒 张 红 霞 (国家海洋局第二海洋研究所,杭州 310012) (浙江教育学院,杭州 310012)

提要 将汉道均衡与潮汐特征、纳潮量、淡水径流量及沉积物搬运格局相联系,确定了 洋浦港的均衡条件;根据纳潮盆地的水面面积-水面高程曲线以及相关的特征潮位估算平均 纳潮量;利用 1977-1979 年波浪观测资料和 CERC 公式计算沿岸输沙率;此外,还用改进 的 Gadd 公式确定口门涨、落潮流输沙率,计算中引入汊道口门流速频率分布函数的定义。由 此而得洋浦港均衡过水面积为 5 800m²,与 O'Brien 方法所得结果相比,本文方法所引起的相 对误差显著减小。

关键词 潮汐汊道 均衡过水面积 沉积物搬运 洋浦港

潮汐汉道口门的均衡过水面积是评价汉道稳定性的重要参数之一。对于任一汉道的 口门,其大潮期间的最大切应力是口门过水面积的函数,这一函数关系被 Esoffier (1940) 表示为"封闭曲线"。在封闭曲线上,对应于均衡切应力的过水面积有两个值,较大的一个 为稳定的均衡过水面积 (A_{B}),较小的一个为不稳定的均衡过水面积 (A_{B}).如果 A_{B} 远 大于 A_{B} ,则汉道是稳定的,否则汊道将由于沉积物的淤积而趋于不稳定 (O'Brien et al., 1972)。

确定 A_E 的经典方法是 O'Brien (1969) 提出来的。该方法假设 A_E 和大潮纳 潮量 P具有如下关系: $A_E = CP^*$,式中,C和 n 为区域性参数,由回归分析而获得。但由于区 域性因素的影响(张忍顺,1984; Zhang, 1987), C和 n 并非普适常数。如果缺乏足够的 过水面积和纳潮量数据,这两个参数就无法确定。因此,O'Brien 方法不能定义单个 潮 汐汊道的均衡过水面积。

Gao 等,(1990)根据对均衡过水面积影响因素的分析,提出了利用单个汊道系统的 地貌、沉积物搬运和水动力诸参数来确定 A_E 的可能性。本文试图对汊道均衡问题作进 一步的分析,建立均衡过水面积的计算方法,并应用于海南岛洋浦港。

1 区域概况

洋浦港潮汐汊道由洋浦湾和新英湾组成,地处海南岛西北海岸(图1)。在大地构造 上位于琼北拗陷带,新构造运动活跃,发生了多期断裂和火山活动,主要构造线方向为

收稿日期: 1991年2月20日,接受日期: 1993年7月10日。

^{*} 交通水运规划设计院资助项目。南京大学朱大奎、王颖教授先后主持了洋浦港地区的野外工作及室内分析;柯 贤坤、罗哲文和傅命佐参加了野外工作;许月华参加了实验室粒度分析;胡晓晓提供了 波 浪 观 测 资 料, 谨 志 谢 忱。

Fig.1 Location and geomorphological characteristics of Yangpu Harbour in Hainan Island

NE-NNE。洋浦港汊道即是沿 NNE 向断裂发育的。汊道北岸为第四纪玄武岩台地,南 岸为砂质海岸(沉积物来源于第三系湛江组)。汊道口门南岸为一箭状砂嘴。新英湾是汊 道系统的纳潮水域,其大潮高潮位之下的水域面积近 50km²。口门西侧(洋浦湾北部)发 育了一片砂砾质浅滩(称为洋浦大浅滩),其 0m 等深线以上面积达 2.3km²(王文介等, 1977)。洋浦湾沿岸形成了高 5—10m 的海蚀崖,目前正趋于稳定阶段(张红霞等,1989)。

汉道系统的表层沉积物分布如图 2 所示。在水深较小的海滩和岸外浅滩区域,底质 以粗粒沉积物为主(平均粒径为-1.5-3.0Φ),分选良好(分选系数为 0.3-0.8)。 在水深 较大区域及新英湾湾顶潮滩,泥质沉积物分布广泛(平均粒径为 5-7Φ),分选性相对较 差(分选系数为 1.5-3.0),但在汊道口门砂质沉积物为主要组分。

2 原理与方法

潮汐汊道口门的均衡过水面积,是指在底部边界大多被松散沉积物覆盖条件下的口门过水面积的时间平均值[这与 O'Brien (1969)的定义是一致的],即:

$$A_E = \frac{1}{T_0} \int_0^{T_0} A dt$$

式中,T。为所考虑的均衡问题的时间尺度。

在汊道口门处,一维的水体和沉积物连续方程(Allen, 1977; Vogel et al., 1984)可分别表示为:

$$UA + Q = A_b \frac{d\eta_b}{dt} \tag{1}$$

?1994-2014 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.

$$\frac{\partial A}{\partial t} + \frac{\partial (Bq_s)}{\partial x} = 0$$
⁽²⁾

式中,U为断面平均流速,A为瞬时过水面积;B为口门宽度;Q为淡水径流量; A_b 为纳 潮海湾的瞬时水域面积; η_b 为纳潮海湾水位; q_s 为断面平均输沙率(以体积计)。式(1) 在 T_0 中的涨潮时段内积分后可化为:

$$T_{f}\langle U_{f}\rangle A_{E} + T_{f}\langle U_{f}'A'\rangle + T_{f}\langle Q\rangle = \langle P\rangle$$
(3)

式中, T_f 为平均涨潮历时; U_f 为涨潮时段的断面平均流速; P 为纳潮量; 尖括号表示时间 平均值。 U'_f , A' 分别为流速和过水面积的时间波动值 ($U_f = \langle U_f \rangle + U'_f$; $A = A_B + A'$)。 (1) 式亦可在落潮时段内作同样处理, 即得:

$$T_{\epsilon} \langle U_{\epsilon} \rangle A_{E} + T_{\epsilon} \langle U_{\epsilon} A' \rangle + T_{\epsilon} \langle Q \rangle = -\langle P \rangle$$
(4)

式中各项意义同式(3),但下标 "e" "表示落潮。

汊道口门的潮汐大多接近于驻波形式,因此(3),(4)两式中的第二项(脉动项)应远小 于第一项。将脉动项略去后,以上两式分别简化为:

$$T_{i}\langle U_{j}\rangle A_{E} + T_{j}\langle Q \rangle = \langle P \rangle$$
⁽⁵⁾

$$T_{\epsilon} \langle U_{\epsilon} \rangle A_{E} + T_{\epsilon} \langle Q \rangle = -\langle P \rangle$$
(6)

对式(2)(沉积物连续方程)在T。内作平均化处理,得:

$$\frac{\partial A_E}{\partial t} + \frac{\partial (B\langle q_s \rangle)}{\partial x} = 0$$

由于 A_E 变化得慢,上式可近似地写成:

$$\frac{\partial (B\langle q_s \rangle)}{\partial x} = 0$$

?1994-2014 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.

这就是说,在汊道口门段的任何位置,有:

$$B\langle q_i \rangle = 常数$$

该常数的物理意义是通过汊道口门的沉积物净搬运量,它可分解为3部分(Boothroyd, 1985; Hayes, 1980; Hine, 1975): (a) 涨潮流作用下的向岸搬运; (b) 落潮流作用下的向海搬运; (c) 沿岸流(波浪作用)引起的向口门水道的搬运。故上式可写成:

$$B\langle q_i \rangle = \frac{1}{T_i + T_e} (T_i B\langle q_{ii} \rangle + T_e B\langle q_{ie} \rangle) + kq_1$$
(7)

式中,〈q,;〉为平均涨潮流输沙率;〈q,,〉为平均落潮流输沙率;q,为沿岸毛输沙率;k为 系数。在式(7)中,输沙率是以体积计算的。若应用以质量计算的输沙公式,则两者之间 的换算关系为:

$$q_i = \frac{1}{\gamma} q \tag{8}$$

式中, Y 为沉积物容重; 9 为以质量计的沉积物搬运率。

平均粒径为 0.11—0.50mm 的砂质沉积物的搬运率,可应用以下公式 (Gadd et al., 1978):q = k₁(U₁₀₀ - U_{100er})³

式中。 k_1 是与沉积物粒径有关的参数; U_{100} 和 U_{100cr} 分别为底床之上100 cm 处的流速和临界起动流速。根据 Von Kármán-Prandtl 流速剖面公式:

$$u_{z} = \frac{u_{*}}{\kappa} \ln \frac{z}{z_{0}}$$

 u_{z} 为底床之上 z 处的流速; u_{*} 为摩阻流速; κ 为 Von Kármán 常数; z_{0} 为底床粗糙率。 u_{z} 的垂线平均值可表示为:

$$\overline{U} = \frac{u_*}{\kappa} \ln \frac{H}{ez_0}$$

式中,H为水深; \overline{U} 为垂线平均流速;e = 2.718。因此, $U_{100} \subseteq \overline{U}$ 的关系为:

$$\frac{U_{00}}{\overline{U}} = \frac{\ln \frac{100}{z_0}}{\ln \frac{H}{ez_0}} = \alpha$$
(9)

对于 $H \ll B$ 的汉道口门, \overline{U} 亦可看作断面平均流速 U。将 U 作为时间系列考虑,则它 有一个时间平均值 $\langle U \rangle$ 和频率分布函数 p(U)。更进一步,如把 U 和 $\langle U \rangle$ 的关系写成:

$$U = \beta \langle U \rangle \tag{10}$$

其中 β 表示瞬时流速与平均流速之比,则U和 β 具有有同样形状的频率分布函数。将公式(9),(10)代人前述输沙公式 (Gadd et al., 1978),得:

$$q = \mathbf{k}_1(\alpha\beta\langle U\rangle - U_{100\,cr})$$

从而在T。内 q 的平均值为:

$$\langle q \rangle = \frac{1}{T_0} \int_0^{T_0} q \, dt = \int_{\beta_0}^{\beta_{\text{max}}} q p(\beta) \, d\beta$$
$$= \int_{\beta_0}^{\beta_{\text{max}}} k_1(\alpha \beta \langle U \rangle - U_{100\,\text{cr}})^3 p(\beta) \, d\beta \tag{11}$$

式中, $p(\beta)$ 为 β 的频率分布函数; β_{0} 为流速达到临界起动值时的 β 值; β_{max} 为 β 的最大值:

$$\beta_0 = \frac{U_{100\,cr}}{\alpha \langle U \rangle} \tag{12}$$

$$\beta_{\max} = \frac{U_{\max}}{\langle U \rangle} \tag{13}$$

式(13)中的 Umax 为汉道口门的最大断面平均流速。

在方程(5)--(13)中,可将〈U_f〉,〈U_c〉和 A_g 看作未知数,它们可根据其余各项参数 而确定。以下将应用这些方程,计算以年为时间尺度的洋浦港口门的均衡过水面积。

3 计算与结果

在均衡过水面积的实际估算中,需要先确定方程(5)一(13)中的各项参数,包括平均 纳潮量、β的频率分布函数、沿岸毛输沙率等等。

3.1 $\langle P \rangle$ 的计算 根据对动量方程的分析 (O'Brien et al., 1972), 纳潮海湾内外 潮 差之比是湾内外高潮时的相位差 ϵ 的函数:

$$\frac{R_b}{R_o} = f(\varepsilon)$$

式中, *R*, 和 *R*。分别代表海湾和开敞海域的潮差。 O'Brien 等,(1972)把 *R*_b/*R*₀和 ε 与 汉道的饱满系数 K 相联系。对于洋浦港,可利用上述关系来估算湾内潮差的特征值。

如果纳潮海湾的潮波为驻波(即湾内高潮时刻恰好对应于口门憩流时刻),则湾内外潮位的相位差等于口门的高潮位时刻与憩流时刻之间的相位差。新英湾的潮波 近 似于驻波,故可利用口门的潮位和潮流资料来估算 ε_o 根据 1983—1985 年的周日水文观测资料,新英湾口门及其附近高潮位时刻与憩流时刻相差 1.5—2h。因此,从 O'Brien 等的 R_b/R_o-K 和 $\varepsilon-K$ 曲线可得 $R_b/R_o=0.97$ 。洋浦港平均大、小潮潮差分别为 3.23m 和 0.52m,故新英湾的平均大、小潮潮差分别为 3.13m 和 0.50m。

用求积仪在五万分之一海图上量算了不同高程下的纳潮海湾面积。所获的水面面 积-高程关系曲线和特征潮位如图 3 所示。为计算不同潮差下的纳潮量,再将此曲线转换 成纳潮海湾水体体积-水位关系曲线(图 4)。 设新英湾的潮差在一个大小潮周期内的变化为:

$$R_{b} = \frac{R_{bs} + R_{bn}}{2} + \frac{R_{bs} - R_{bn}}{2} \sin\left(\frac{2\pi}{15}t\right), \ t = 1, 2, \cdots, 15$$
(14)

式中,下标 ^s 和 ⁿ 分别表示大潮和小潮。由此可得到 R_s 的时间系列。每一个 R_s 值都可 根据图 4 换算成纳潮量(假定平均海面不变,纳潮量为对应于平均海面以上 R_s/2 处的水 体体积与对应于平均海面以下 R_s/2 处的水体体积之差)。根据所获的新英湾纳潮 量,时 间系列,求得平均纳潮量为 62.8×10⁶m³(最大纳潮量为 10⁸m³)。

3.2 $p(\beta)$ 的确定 为了确定 β 的频率分布函数 $p(\beta)$, 假定在涨潮或落潮时段, 口门 流速随时间的变化为:

$$U = \frac{U_0}{2} \left[1 + \sin\left(t - \frac{\pi}{2}\right) \right], \ 0 \le t \le 2\pi$$
(15)

式(15)中U。为最大流速,并且设U。在大小潮周期内的变化为:

$$U_{0} = \frac{U_{os} + U_{on}}{2} + \frac{U_{os} - U_{on}}{2} \sin\left(\frac{2\pi}{15}i\right), \ i = 1, 2, \cdots, 15$$
(16)

式(15),(16)定义了U的时间系列,由此可统计出 $\beta(=U/\langle U \rangle)$ 的频率分布(图 5)。

3.3 沿岸毛输沙率的估算 沿岸 输 沙率 用 CERC 公式 (CERC, 1984) 计算。波浪 资料依据洋浦港岸外 1977—1979 年的 波 浪 观测结果。首先选取与波浪输沙断面 (其位 置见图 1) 有关的波浪来向 (NNW—SSW 之 间),然后将波高按 0—0.5m,0.5—1.0m 和 1.0—1.5m 分级,波浪周期按 1—3s,3—5s 和 5—7s 分级。据此求得各个级别的波高和 周 期的平均值及出现频率(表 1) 以及各组波浪 造成的沿岸输沙率(表 2)。结果表明,北向 输沙率为 5.9×10⁴m³/a,南向输沙率为 1.0× 10⁴m³/a,沿岸毛输沙率为 6.9× 10⁴m³/a。

 $\beta, p(\beta)$

3.4 其它参数 新英湾口门宽度为 480m,最大水深为 22m,平均涨、落潮历时分别为 13.2 和 11.6h。淡水径流主要来自湾顶的两条小河,平均流量为 25m³/s(张 红 霞 等, 1989)。

洋浦港的涨潮流三角洲发育不良(张红霞等,1989),这表明通过汊道口门的沉积物净搬运量很小,可以忽略;这也表明口门外沉积物以潮流转运为主,故式(7)中的**长**近似为 1。

新英湾口门的沉积物以砂质物质为主(图 2),故底床粗糙率 z₀在潮流的增速和减速 时段分别取 0.08cm 和 0.16cm。式(11)中的常数 ጲ₁取为 4.48×10⁻⁵gcm⁻¹s⁻² (Harris et al., 1988),临界起动流速 U_{100c},取为 19cm/s (Dyer, 1986)。将以上各项参数代人 公 式(5)--(13),得:

$$47.5 \langle U_f \rangle A_E = 61.6 \times 10^3 \tag{17}$$

4	1	4

表 1 与沿岸输沙有关的波浪出现频率

Tab. 1 Occurrence frequency of waves related to longshore sediment transport in Yangpu Harbour of Hainan Island

浪 向	波	型	平均周期 (s)	平均波高(m)	频率(%)
NNW	凤	浪	1.4	0.17	5.74
NNW	凤	浪	3.7	0.62	0.09
NW	凤	浪	1.3	0.17	9.20
NW	涌	浪	1.5	0.26	0.30
WNW	凤	浪	1.4	0.17	2.22
. wsw	凤	浪	1.6	0.20	1.67
wsw	涌	浪	2.4	0.25	0.38
wsw	涌	浪	4.2	0.76	0.32
SW	凤	浪	1.6	0.23	7.49
SW	凤	浪	2.8	0.53	0.15
SW	涌	浪	2.3	0.33	3.96
SW	涌	浪	. 3.2	0.43	0.75
SW	涌	浪	3.6	0.62	2.87
SW	涌	浪	5.4	0.83	0.10
SSW	风	浪	1.6	0.21	1.74
SSW	风	浪	3.1	0.22	0.09
SSW	涌	浪	2.2	0.32	0.44
SSW	涌	浪	4.4	0.81	0.21

表 2 洋浦湾波浪沿岸输沙率 (m³/a)¹⁾

Tab. 2 Longshore sediment discharges introduced by waves on Yangpu Bay beaches of Hainan Island

沿岸输沙率		
-3.9×10 ³		
-4.9×10 ³		
-0.9×10^{3}		
6.1×10 ³		
51.5×10 ³		
1.1×10 ³		

1) 北向输沙为正,南向为负。

Ç.,

$$41.8 \langle U_e \rangle A_E = 63.8 \times 10^3$$
(18)

$$224.5 \langle q_e \rangle - 255.5 \langle q_i \rangle = \frac{\gamma 6.9 \times 10^4}{365 \times 86.400}$$
(19)

1

对式(19)需作如下说明:单一粒径中,细砂的孔隙率为41%-49%,但不同粒径的混和物质的孔隙率要小一些(Dyer,1986)。因此,新英湾口门底质的孔隙率取为0.4,即7取为1.6×10³kg/m³。

式(19)中的〈q_i〉和〈q_e〉用式(11)计算。利用(9)式可得 α 在增、减速时段的值分 别为 0.83 和 0.81。因此,〈q_i〉和〈q_e〉可分别写成(假定增、减速时段的长度相等):

$$\langle q_{f} \rangle = \frac{1}{2} \int_{\beta_{0}(f)}^{\beta_{max}(f)} 4.48 [(0.83\beta \langle U_{f} \rangle - 0.19)^{3} + (0.81\beta \langle U_{f} \rangle - 0.19)^{3}] p(\beta) d$$
(20)

?1994-2014 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.

$$\langle q_{\epsilon} \rangle = \frac{1}{2} \int_{\beta_{0}(\epsilon)}^{\beta_{\text{max}(\epsilon)}} 4.48 [(0.83\beta \langle U_{\epsilon} \rangle - 0.19)^{3} + (0.81\beta \langle U_{\epsilon} \rangle - 0.19)^{3}] p(\beta) d\beta$$
(21)

最后,解联立方程组(17)—(21)式,求得 $\langle U_i \rangle = 0.216 \text{ m/s}, \langle U_e \rangle = 0.255 \text{ m/s}, A_E = 6.0 \times 10^3 \text{m}^2_{\odot}$

4 讨论与结语

Т

根据 1983—1985 年在新英湾口门及其附近所作周日水文观测,口门平均涨潮流速为 0.22m/s,平均落潮流速为 0.27m/s(张红霞等,1989),本文与之分析结果出入不大。

关于均衡过水面积尚无实测数据可供对比。但是,根据对洋浦港地貌发育史、海岸动力及沉积物特征的研究(张红霞等,1989),该汊道系统目前处于稳定阶段,口门断面的变化很小。从五万分之一海图上量算的平均海面以下的过水面积为 5 800m²,如果以其作为近似的均衡过水面积,则本文所分析的 *Ag* 值的相对误差仅为 3.5%。作为对比,本文还计算了用 O'Brien 方法所求得的 *Ag* 值的相对误差。对华南沿海 32 个潮汐汊道的大潮纳潮量(*P*)-过水面积(*A*)关系的回归分析(Zhang, 1987) 结果为:

$A_E = 0.982 P^{0.958}$

式中, A_E 以 km² 计, P 以 km³ 计。洋浦港大潮纳潮量为 10⁸m³, 按上式计算, 其均衡过 水面积应为 11 000m², 相对误差达 90%。

O'Brien 方法在其它区域的应用也显示了较大的相对误差。 例如在东 海 沿 岸(高 抒,1988), 汊道的 lg A 与 lg P 具有很高的相关系数,但实际的过水面积与回归曲线上 的数值差距仍然较大,最大相对误差可达 80%。O'Brien 方法的问题在于,若参与统计的 汊道都已处于均衡状态,则所得曲线只能代表平均意义上的均衡状态;若参与统计的汊道 尚未全部达到均衡,则所得曲线与各个汊道的实际均衡状态有更大的误差。对于类似于 洋浦港的潮汐汊道,本文所得式(7)亦可应用于沿岸毛输沙量的计算。在波浪资料缺乏的 情况下,利用潮汐汊道的均衡性来估算沿岸输沙率是一种经济、简便的方法。

参考文献

- 王文介、李春初、杨干然,1977,洋浦港港湾地貌的形成和发育,南海海洋地貌论文集,3:80-100。
- 张红霞、朱大奎,1989,海南岛洋浦港潮汐汊道的稳定性,海岸工程,8(3): 31—38。
- 张忍顺,1984,潮汐汊道研究的进展,海洋通报,3(2): 89—96。
- 高抒,1988,东海沿岸潮汐汊道的 P-A 关系,海洋科学,1: 15—19。

Allen, J.R.L., 1977, Changeable rivers: some aspects of their mechanisms and sedimentation, In:River Channel Changes, ed. by Gregory, K.J., John Wiley, (Chichester), pp. 15-46.

Boothroyd, J.C., 1985, Tidal inlets and tidal deltas, In: Coastal Sedimentary Environments (2nd edition), ed. by Davis, R.A. Jr., Springer-Verlag (New York), pp. 445-532.

- CERC, 1984, Shore Protection Manual (4th edition), ASCE(New York), pp. IV, 1-208.
- Dyer, K.R., 1986, Coastal and Estuarine Sediment Dynamics, John Wiley (Chichester), 342pp.
- Escoffier, E.F., 1940, The stability of tidal inlets, Shore and Beach, 8(4): 114-115.
- Folk, R.L., 1980, Petrology of Sedimentary Rocks, Hemphill, Austin (Texas), 184pp.
- Gadd, P.E. et al., 1978, Estimate of sand transport on the New York shelf using near-bottom current meter observations, J. Sedim. Petrol., 48: 239-252.
- Gao, S. and Collins, M., 1990, Equilibrium cross-sectional areas and related sediment transport, In: Abstracts(Posters), 13th International Sedimentological Congress, International Association of Sedimentologists, Nottingham (England), pp. 84--85.

- Harrs, i P.T. and Collins, M., 1988, Estimation of annual bedload flux in a macrotidal estuary: Bristol Channel, U.K. Mar. Geol., 83: 237-252.
- Hayes, M.O., 1980, General morphology and sediment patterns in tidal inlets, Sedim. Geol., 26:139-156.
- Hine, A.C., 1975, Bedform distributions on tidal inlets in the Chatham Harbor Estuary, Cape Cod, Massachusetts, In: Estuarine Research, Vol.2: Geology and Engineering, ed. by Cronin, L.E., Academic Press (New York), pp. 235-252.
- O'Brien, M.P., 1969, Equilibrium flow areas of inlets on sandy coasts, J. WatWay. Horbor Div., 95(WW1): 43-52.
- O'Brien, M.P. and Dean, R.G., 1972, Hydraulics and sedimentary stability of tidal inlets, Proceedings of 13th Coastal Engineering Conference, ASCE(New York), pp. 761-780.
- Vogel, M.J. and Kana, T.W., 1984, Sedimentation patterns in a tidal inlet system, Moriches Inlet, New York, Proceedings of 19th Coastal Engineering Conference, ASCE(New York), pp. 3017– 3033.
- Zhang, Q.M., 1987, Analysis of P-A correlationship of tidal inlets along the coast of south China, 1987, Proceedings of Coastal and Port Engineering in Developing Countries (Vol.1), Ocean Press (Beijing), pp. 412-422.

EQUILIBRIUM CROSS-SECTIONAL AREA OF A TIDAL INLET SYSTEM, YANGPU HARBOUR, HAINAN ISLAND

Gao Shu (Second Institute of Oceanography, SOA, Hangzhou 310012) Chang Hongxia (Zhejiang College of Education, Hangzhou 310012)

Abstract

An analytical method is developed to investigate equilibrium cross-sectional areas of tidal inlet systems. The equilibrium can be related to tidal characteristics, tidal prism, freshwater input from rivers and sediment transport patterns. The method is used to identify the equilibrium conditions in Yangpu Harbour, Hainan Island. The mean tidal prism is estimated on the basis of the relationship between the basin hypsometry and characteristic tidal water levels. The rate of longshore sediment transport is calculated based upon a CERC formula and use of 1977-1979 wave data. For determination of sediment transport rates due to flood and ebb tide currents, the Gadd equation is modified through a definition of the frequency distribution function of current speeds within the harbour entrance. Thus, an equilibrium cross—sectional area of 5 800m² for Yangpu Harbour is obtained. The result indicates a much smaller error introduced by the approach developed here than by the O'Brien method.

Key words Tidal inlets Equilibrium cross-sectional area Sediment transport Yangpu Harbour