

大獭蛤的核型研究

英, 苏以鹏 潘

(广西大学 动物科学技术学院, 广西 南宁 530004)

摘要:以担轮幼虫(trochophore)为材料,采用秋水仙素活体预处理-低渗-固定-热滴制片-空 气干燥-染色,制作染色体标本;对标本进行观察、计数、显微拍照,再运用数理统计、软 件处理对大獭蛤(Lutraria maxima Jonas)的染色体数目及核型进行了探讨。结果显示,大獭 蛤二倍体的染色体数目为 34,其核型公式为 2n = 20m +12sm +2st,NF = 76,未发现有异型 和具随体的染色体。另外本研究还分析了大獭蛤与蛤蜊科的其它种类之间的核型异同,为 探讨它们之间的亲缘关系提供科学依据。

关键词: 大獭蛤(Lutraria maxima Jonas); 染色体; 核型

中图分类号: Q343.2 文献标识码: A 文章编号: 1000(3096)2007(09)0087-04

大獭蛤(Lutraria maxima Jonas), 属瓣鳃纲 (Lamillibranchia)、帘蛤目(Veneroida)、蛤蜊科 (Mactridae)、獭蛤属(Lutraria),在中国主要分布在广 西、广东及福建、海南沿海,以北部湾数量最多,是 中国北部湾沿海特有的一种重要经济双壳类。其壳长 椭圆形(10.0~12.0 cm),广西沿海俗称象鼻螺、牛 螺,广东称包螺。该种在近年来依靠天然苗种通过海 上圈养已发展成为广西、广东沿海浅海增养殖的主要 品种之一。目前广西生产性人工育苗已成功[1],滩涂 养殖正在逐步走向规模化。贝类染色体的研究在国内 外报道的并不多,中国海产贝类已报道染色体数目及 核型的种类有 36 种, 而蛤蜊科的种类已研究核型的 仅有中国蛤蜊(Mactra chinensis)和四角蛤蜊(Mactra veneriformis) [2].

目前关于大獭蛤的染色体数目及核型分析的资 料国内外未见有报道。研究大獭蛤的染色体数目和核 型,对于其细胞遗传、细胞分类及遗传育种等研究具 有重要的意义。作者对大獭蛤的染色体进行了分析研 究,从染色体水平为该贝的遗传生化的进一步研究提 供理论基础, 也为探讨和研究大獭蛤在贝类系统分类 中的地位及其系统演化过程提供一定的参考依据。

1 材料与方法

1.1 材料

实验贝于 2004年9月购自广西北海市侨港镇,

自然海区捕捞的2龄以上的性成熟个体。亲贝经人工 解剖取精卵授精,在 26~28 ℃授精后 9 h 胚胎发育至 担轮幼虫(trochophore)时,用 20 μm 筛绢过滤收 集担轮幼虫用于染色体研究。

1.2 方法

将采集到的担轮幼虫浓缩收集入 1.5 mL 的离心 管中,用终质量比为 0.2%的秋水仙素海水溶液处理约 2 h, 而后用 0.075 mol/L 的 KCI 进行预低渗和低渗处理, 使细胞充分膨胀,用新配制的 Carnoy 氏液反复固定 3次。50%的醋酸解离样品,轻轻吸打。50 ℃温片滴 片,自然干燥一夜后,用 10%的 Giemsa 染液(pH 为 6.8) 染色 40~60 min, 冲洗, 自然干燥后镜检。

选取染色体分散适度,清晰且不重叠的细胞中期 分裂相 100 个左右,观察并记数染色体数目。选取分 散较好的 10 个中期分裂相进行显微拍照,并测出各 条染色体实际长度,相对长度(100×染色体长度/单 倍体染色体总长度),臂比(长臂/短臂)及着丝粒指

收稿日期: 2007-05-20; 修回日期: 2007-07-10 基金项目: 广西科学研究与技术开发计划资助项目(桂科攻 0537010-1C); 广西自然科学基金资助项目(桂科青 0640007) 作者简介:潘英(1968-),女,广西南宁人,副教授,博士, 研究方向: 海洋贝类遗传育种学, 电话: 0771-3235635, E-mail:

nnpying@sohu.com

研究 **N**OTE 简 报

数(100×短臂长度/染色体长度),并计算出它们的平均数(mean)和标准差(SD)。依据 Levan 等^[3]确定的标准进行染色体分类,每组再按长度递减顺序将染色体排列,得出核型公式。

2 结果

2.1 染色体二倍数 (2n) 的确定

从选取的 120 个中期分裂相进行染色体统计,结果见表 1。

表 1 大獭蛤二倍体染色体数目的统计

Tab.1 Statistics of the diploid chromosome number of

L. maxima

染色体数 (2n)	细胞数(个)	百分率(%)
< 20	7	5.83
20	1	0.83
24	4	3.33
28	7	5.83
30	6	5.00
32	12	10.00
34	63	52.50
36	10	8.33
38	2	1.67
40	3	2.50
> 40	5	4.17

从表 1 可知,染色体众数为 34 的分裂相细胞占全部计数细胞的 52.50%,由此确定大獭蛤的二倍体染色体数目为 2n = 34 (图 1)。

图 1 大獭蛤二倍体 Fig.1 The diploid of *L. maxima*

2.2 染色体核型分析

对大獭蛤染色体拍照、统计,按染色体长度从大 到小顺序编号为 1~17 对,见图 2。

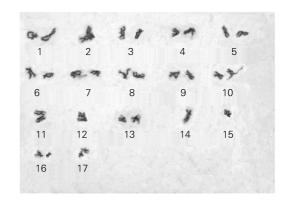


图 2 大獭蛤的核型 Fig.2 The karyotype of *L. maxima*

根据 10个中期分裂相测量获得的二倍体染色体实际长度、相对长度、臂比和着丝粒指数的统计结果(表 2),可以确定大獭蛤的 17 对染色体分为 3 种类型,即第 1,5,7,10,12,13,14,15,16,17 对为中部着丝粒染色体(m),第 2,3,4,8,9,11 对为亚中部着丝粒染色体(sm),第 6 对为亚端部着丝粒染色体(st)。因此,得出大獭蛤核型公式为: 2n=34,20 m+12 sm+2 st,染色体的总臂数(NF)为 76,染色体总长度(TCL)为 64.23 μm,染色体实际长度(CL)范围为 1.97~5.09 μm,平均长度为 3.78 μm。在所有染色体中,第 15,16 对和第 17 对染色体较小,特征明显,易于配对,其余各对染色体之间的差异不明显。在 10 个放大的分裂相中未发现随体、次缢痕存在,也未见到异形的性染色体。

3 讨论

贝类的染色体研究,不仅对阐明其遗传变异和繁殖发育规律具有重要意义,而且也有助于对亲缘种的鉴定、群落结构分析、亲缘关系及系统分类等有关问题的探讨。海产贝类的染色体多以贝类成体组织、早期胚胎或幼虫、幼贝为材料进行,尤其以早期胚胎和担轮幼虫的分裂相更为理想^[2]。到目前为止,关于大獭蛤二倍体核型的研究还未见报道。本试验以分裂旺盛的担轮幼虫为材料进行大獭蛤的染色体研究,较易

获得分散良好的中期分裂相。结果表明,大獭蛤的二倍体染色体数目为 2n = 34,其核型公式为 2n = 34

20 m + 12 sm + 2 st

表 2 大獭蛤核型的统计结果

Tab.2 The results of the karyotype analysis of L. maxima

染色体编号 染色体长度 (μm)	染色体相对长度 (%)	臂比	着丝粒指数	染色体类型	
					1
2	5.09 ± 0.71	7.91 ± 0.37	1.72 ± 0.09	33.33 ± 1.86	sm
3	4.67 ± 0.59	7.27 ± 0.31	2.17 ± 0.13	35.66 ± 0.27	sm
4	4.60 ± 0.72	7.16 ± 0.53	1.79 ± 0.08	27.41 ± 1.38	sm
5	4.49 ± 0.47	6.99 ± 0.65	1.37 ± 0.07	44.74 ± 2.85	m
6	4.38 ± 0.67	6.82 ± 0.21	3.20 ± 0.15	13.93 ± 1.26	st
7	4.38 ± 0.52	6.82 ± 0.36	1.42 ± 0.06	41.84 ± 2.90	m
8	4.03 ± 0.69	6.27 ± 0.61	2.15 ± 0.10	30.93 ± 2.36	sm
9	3.88 ± 0.64	6.04 ± 0.31	1.73 ± 0.17	33.98 ± 1.15	sm
10	3.74 ± 0.49	5.83 ± 0.32	1.13 ± 0.11	40.24 ± 0.18	m
11	3.67 ± 0.54	5.70 ± 0.42	1.72 ± 0.05	32.63 ± 1.65	sm
12	3.53 ± 0.65	5.49 ± 0.45	1.09 ± 0.06	43.24 ± 2.25	m
13	3.15 ± 0.64	4.89 ± 0.27	1.44 ± 0.05	47.54 ± 1.32	m
14	2.32 ± 0.59	3.62 ± 0.45	1.54 ± 0.08	40.14 ± 2.16	m
15	2.33 ± 0.58	3.62 ± 0.75	1.04 ± 0.04	44.50 ± 1.15	m
16	2.09 ± 0.55	3.26 ± 0.27	1.16 ± 0.03	42.58 ± 2.10	m
17	1.98 ± 0.65	3.08 ± 0.28	1.64 ± 0.15	41.64 ± 1.65	m

迄今已报道蛤蜊科 7 种的二倍体染色体数目多 为 36 和 38 两种类型[4], 而本研究发现大獭蛤的二倍 体染色体数目为 34, 与中国蛤蜊、四角蛤蜊在染色 体条数上有较大的区别,而后两者在染色体条数则相 同 (2n = 38) [4,5], 这种情况有待于今后研究进一步 蛤蜊科尤其是蛤蜊属其它种类的核型, 方能作出解 释。Ahmed^[6]认为,双壳类原始二倍体数目为 2n = 30, 在核型演化中,由这个原始类型向两个方向演化,或 者增加或者减少其染色体数目。本实验得出的大獭蛤 二倍体染色体数目为 34, 与该目其它种的染色体数 目差异不大,这在一定程度上反映了近缘种之间染色 体特征的相似性,也说明贝类演化过程中染色体数目 变化的保守性[2]。蛤蜊科有染色体核型报道的种类仅 有中国蛤蜊和四角蛤蜊。孙振兴等[5]报道了中国蛤蜊 的染色体数为 2n = 38,核型为 20m+16sm+2st/t。与 大獭蛤核型相比 (2n = 34, 20m+12sm+2st), 它们都 具有 10 对中部着丝粒染色体, 1 对亚端部着丝粒染

色体,只是中国蛤蜊在亚中部着丝粒染色体比大獭蛤 多 2 对, 在核型上它们具有明显的类同特征; 而同 为蛤蜊科的四角蛤蜊,染色体数为 2n = 38,核型为 14m+14sm+10st/t, 与大獭蛤核型相差较大。蛤蜊科 已报道核型的这 2 个种类,它们的核型主要由中部 (m) 和亚中部 (sm) 着丝粒染色体构成,端部 (t) 或亚端部(st)染色体都占一定的比例。在核型组成 上,多数贝类是以 m 和 sm 染色体为主要类型[7]。 Ahmed^[6]提出 m/sm 染色体一般导致稳定的染色体组 型,而t/st染色体比较多变,因此,蛤蜊科种类在染 色体进化上比较保守,有稳定的细胞学特征。大獭蛤 的核型与此相似,表明国内已报道的多数海洋贝类似 乎有比较稳定的染色体组型。由于具有较多 m/sm 着 丝粒染色体核型的种比具有较多 st/t 着丝粒染色体核 型的种更为高级或特化[8], 所以在帘蛤目蛤蜊科的种 类有可能是相对进化的类群。本研究得出的大獭蛤核 型与中国蛤蜊相近似,结合核型分析结果看,可能暗

示大獭蛤在演化过程中与中国蛤蜊的亲缘关系较近, 而与四角蛤蜊较远。

对于贝类的性染色体的研究报道很少,迄今为止,国内已报道过的贝类染色体中均未发现异形的性染色体。国外仅稻叶明彦在腹足类中发现有 X0 型或 XY 型性染色体的存在^[9],而双壳类中仅报道了侏儒蛤的性别决定类型属于 XX (♀)-XY 型^[10]。大獭蛤的核型分析中未发现有随体、次缢痕存在,亦未见到异形的性染色体。这和已有的关于软体动物的染色体研究的报道相同^[11],说明贝类染色体属于较原始的类型,其控制性别的基因比较原始,尚处于进化的初始阶段。

参考文献:

- [1] 李琼珍,陈瑞芳,童万平,等. 盐度对大獭蛤胚胎发育 的影响[J]. 广西科学院学报,2004,20(1):33-34.
- [2] 孙振兴. 中国海洋贝类染色体研究进展[J]. 海洋通报, 2004, 23 (6): 77 83.
- [3] Levan A, Fredga K, Sandbergm A A. Nomenclature for centromeric position on chromosomes[J]. Hereditas, 1964, 52: 201 - 220.

- [4] 阙华勇, 齐秋贞, 邱文仁. 帘蛤目 (瓣鳃纲) 四个种类的核型研究[A]. 齐钟彦, 贝类学论文集(Ⅷ)[C]. 北京: 学苑出版社, 1999, 75 85.
- [6] Ahmed M. Chromsome cytology of marine pelecypod mollusks[J]. J Sci Karachi, 1976, 4: 77 - 94.
- [7] 王梅林,郑家声,朱丽岩. 我国海洋鱼类和贝类染色体组型研究进展[J]. 青岛海洋大学学报, 2000, **30** (2): 277 284
- [8] 吕振明, 柴雪良, 刘保忠, 等. 文蛤二倍体和三倍体染 色体核型的分析[J]. 中国水产科学, 2003, **10** (6): 519 -522.
- [9] 稻叶明彦. 软体动物的染色体和系统分类[J].动物学杂志, 1985, 4: 44 48.
- [10] Guo X, Allen S K. Sex determination and polyploid gigantism in the dwarf surfclam (*Mulinia lateralis* Say) [J]. Genetics, 1994, 138: 1 199 - 1 206.
- [11] 王永明. 低等脊椎动物的性别[J]. 遗传, 1988, **10** (4): 45-46

The karyotype of *Lutraria maxima* Jonas

PAN Ying, SU Yi-peng

(College of Animal Science and Technology, Guangxi University, Nanning 530004, China)

Received: Jun.,05,2007

Key words: Lutraria maxima Jonas; chromosome; karyotype

Abstract: With larval chromosome as the research material, using the colchicum pretreatment of the living specimen: hypoosmotying - the fixing - hot dropping making - air drying - dyeing, the chromosome specimen was manufactured. Observing,numbering and photographing the specimen,and then using the mathematical statistic, software, *Lutraria maxima* Jonas chromosome number and karyotype were discussed. The results show that the karyotypic formula of *Lutraria maxima* Jonas was as follows: 2n = 34, 20m + 12sm + 2st, NF = 76. It was shown that there is no isomerism or satellite chromosome. Furthermore, the comparison of karyotype is also made between different species of *Mactridae* order, so as to lay a theoretic foundation for further researches on their evolutional relationship.

(本文编辑: 谭雪静)