| 摘要: |
| 由于陆地资源限制, 光伏逐渐向环境更为恶劣的海洋领域发展, 对光伏平台结构提出更高要求。风载荷作为海上固定式光伏所受的主要载荷, 直接影响结构能否安全运行。本文提出了一种海上固定式光伏支架型式, 并基于计算流体力学方法结合RSM湍流模型建立了在风载荷作用下海上固定式光伏的流场数值模型。研究了不同风向角和安装倾角下固定式光伏平台周围的流场特性。结果表明,当风向角为0°时, 结构的升力系数随着安装倾角增大而减小, 结构的阻力系数在安装倾角为10°时取得最小值; 当风向角为90°时, 结构的升力系数和阻力系数对安装倾角的变化不敏感; 当风向角为180°时, 结构的升力系数取得最大值, 易发生倾覆, 结构的升力系数和阻力系数在安装倾角为10°时取得最大值。本研究可以为海上固定式光伏支架设计与优化提供数据支撑和理论参考, 有十分重要的工程应用价值和实际意义。 |
| 关键词: 光伏支架 风向角 安装倾角 风力系数 数值模拟 |
| DOI:10.11759/hykx20241012001 |
| 分类号:P751 |
| 基金项目:中国能源建设集团江苏省电力设计院有限公司科技项目资助(32-JK-2023-006) |
|
| Influence of wind direction and installation angles on offshore fixed photovoltaic wind loads |
|
GE Xiaofeng1, JIANG Tairong1, HAN Xuedong1, JI Chunming1, NI Huihao2, ZHAO Yunpeng2
|
|
1.Jiangsu Power Design Institute Co., Ltd., China Energy Engineering Group, Nanjing 211102, China;2.State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China
|
| Abstract: |
| The growing demand for renewable energy combined with limited land resources has driven the development of marine-based photovoltaics, thereby placing greater demands on the structural safety of photovoltaic (PV) platforms. The wind load, which is the main force acting on offshore fixed PVs, plays a crucial role in ensuring the safe operation of the PV structure. In this study, we propose a type of fixed offshore PV support that employs computational fluid dynamics combined with a Reynolds-stress turbulence model to analyze the flow field under wind load. We examined the flow-field characteristics around the PV platform at varying wind direction angles and installation angles. The results demonstrate that at a wind direction angle of 0°, the lift coefficient of the structure decreases as the installation angle increases, and the resistance coefficient reaches its minimum value at an installation angle of 10°. At a wind direction angle of 90°, both the lift and drag coefficients remain largely unaffected by changes in the installation angle. However, when the wind direction angle is 180°, the lift coefficient increases, making the structure more prone to overturning. At this angle, both the lift and drag coefficients reach their maximum values at an installation angle of 10°. This study provides valuable data and theoretical insights for the design and optimization of offshore fixed PV supports, providing substantial engineering and practical value for real-world applications. |
| Key words: photovoltaic bracket wind direction tilt angle wind force coefficient numerical simulation |