深海会聚区波导不变量特征研究及应用

唐帅, 笪良龙, 徐国军, 崔宝龙

(海军潜艇学院, 青岛 266071)

摘要:为了解决深海会聚区目标及其运动态势难以判断的问题,在对会聚区形成条件 及其声场传播规律研究基础上,基于波导不变量理论,对典型深海环境不同位置距离 -频率干涉条纹特征的进行理论分析和仿真验证。理论分析和仿真结果表明,深海会 聚区存在与其他区域不同的干涉条纹特征,其对应的波导不变量 β 值为负。提出了利 用会聚区特有的干涉条纹特征,对会聚区目标及其运动态势进行初步判断的方法,仿 真结果和试验数据表明,判断方法可行有效。

关键词: 波导不变量 会聚区 目标运动态势

文献标识码:

中图分类号: TB556

在深海环境中,会聚区是水声传播最显 著的特点之一。当声源和接收器都位于海洋 近表层时,海面声源发射的声波形成一个向 下的波束,这一波束沿着深海折射路径传播 后,重新出现在近海面,在距声源数十公里 处产生一个声强较高的环带状区域,称为会 聚区[1],该现象随着距离的增大反复出现。 会聚区传播之所以重要,是因为它是深海中 良好的声信道,能够高强度、低失真地远距 离传输声信号,很多学者对会聚区中的声传 播特征及其应用进行了广泛的研究^[2-14],但 对于深海会聚区干涉条纹特征及其应用方 面的研究则鲜有涉及。波导不变量理论是由 俄罗斯学者 Chuprov 提出, 用于描述声场中 的干涉现象。近年来,波导不变量相关理论 主要用于浅海环境下目标定位及运动态势 分析等研究[15-17],因此,为了进一步深入研 究会聚区声场特性, 解决会聚区目标及其运 动态势判别困难的问题,本文分析了会聚区 形成条件及其声传播规律,并基于波导不变 量理论,研究了深海会聚区干涉条纹特征的 性质,并利用该特征对深海会聚区目标及其 运动态势判断进行了研究。

1 深海会聚区声场

1.1 会聚区形成条件

在深海环境中,会聚区的形成必须满足 一定的环境条件。当声源置于声道内,并且 海水的深度必须足够大是形成会聚区的必

基金项目: 国防预研基金项目(51303080302-5),国家自然科学 基金(61203271) 作者简介: 唐帅(1984-), 男,博士研究生。

E-mail:etang123@163.com

文章编号:

要条件。此时传播至海洋深处的声线发生折 射,不触及海底而聚焦在一起。而在深度较 小的海水中,深处的声线被海底反射,从而 抑制了会聚区的发生。因此对于给定声速剖 面存在一个产生会聚区的最小海水深度,即 临界深度。临界深度以下到海底的深度距离 称为深度余量。如果海区的深度余量越大, 不触及海底而聚焦在一起的声线数越多,会 聚区的能量越强,如图1所示。

1.2 会聚区声传播

典型深海波导如图 2 所示,包含上层的 深海声道剖面和下层的海底,深海声道剖面 水体最大声速 C_{wmax}=1559.3m/s,海底参数 为:声速 C_b=1668m/s,密度=1.8g/cm3,吸 收系数=0.692*dB*/λ。声源深度设为 7m,频 率 750Hz。图 3 给出了传播损失图(TL,单 位为 dB),图 3(a)给出了同时包含水中传播 模式和海底反射模式的传播损失图,3(b)所 显示的传播损失只包括水中传播模式,通过 对比可以看出,深海会聚区是由声速小于 C_{wmax}的在水中传播的波导简正波形成的, 即简正波下反转点在海底上方,不与海底发 生接触;而影区包含的是声速介于 C_{wmax}和 C_b之间的海底反射模式。

^{*}收稿日期: 修回日期:

2.1 波导不变量理论

波导声场结构一般都非常复杂,对于水 听器接收的宽带信号,距离-频率图上表现 出明显的干涉现象(即明暗相间条纹)。这 种干涉条纹是由不同号简正波之间的干涉 随距离和频率的变化规律形成的。根据简正 波理论,当声源与接收水听器间的水平距离 大于水深的一定倍数时,单个无指向性的点 声源所产生的水下声压场可由一组有限阶 次的简正波的和来表示,当声源深度 *z*_s,接 收器深度为 *z*_r,收发距离为*r* 时,点源声场 频率响应函数 *P*(*r*, *z*_s, *z*; *ω*) 可表示为:

$$P(r, z_s, z_r; \omega) = \sqrt{\frac{8\pi}{r}} e^{i\pi/4} \sum_l \Phi_l(z_s) \Phi_l(z_r) \sqrt{\mu_l} e^{i\nu_l r}$$
(1)

其中 $v_l = \mu_l + i\eta_l$, μ_l 为简正波本征值

的实部, η_l 为简正波的衰减, $\Phi_l(z)$ 为简正 波的本征函数。定义简正波幅度为

$$A_l = \sqrt{\frac{8\pi}{r}} \Phi_l(z_s) \Phi_l(z_r) \sqrt{\mu_l}$$
(2)

则公式(1)可以写成

$$P(r, z_r, z_s, \omega)$$

 $= \sum_{l=1}^{L} A_l(z_s, z_r) \exp[i(v_l r + \pi/4)]$
(3)

则声强可表示为,

$$I(r,\omega) = E[PP^*]$$
$$= \sum_{l} A_{l}^{2} + 2\sum_{m} \sum_{l \neq m} A_{m} A_{l} \cos[\Delta \mu_{lm}(\omega)r] \quad (4)$$

式中,
$$\Delta \mu_{ml}(\omega) = \mu_l(\omega) - \mu_m(\omega) \quad (m \neq l)$$

为简正波本征值之差。接收器接收声强由两部分组成:第一部分随距离和频率(这里假设模态函数的幅值并非频率的强函数)缓慢变化;第二部分由一系列 cos 因子累加而成,反映了模态函数之间的干涉特征,并且随着距离的变化而呈现振荡,这种振荡就导致了声强时频分布图上的波导不变条纹图案^[18]。

每一个 \cos 因子对总声强的贡献值可表示为 I_{ml} ,

$$I_{ml}(r,\omega) = E[PP*]$$

= $A_m A_l \cos(\Delta \mu_{lm}(\omega)r)$ (5)

干涉条纹是距离-频率平面上强度 I_{ml} 相等的直线或曲线,其斜率可由条纹的方向确定。在距离-频率平面,对 $I_{ml}(r,\omega)$ 进行一阶泰勒级数展开,并将展开结果等于0得,

$$\frac{\partial I_{ml}(r,\omega)}{\partial r}\delta r + \frac{\partial I_{ml}(r,\omega)}{\partial \omega}\delta\omega = 0$$

c ...

可解得干涉条纹斜率
$$\frac{\partial \omega}{\delta r}$$
,
 $\frac{\partial \omega}{\delta r} = -\frac{\partial I_{ml}(r,\omega)}{\partial r} / \frac{\partial I_{ml}(r,\omega)}{\partial \omega}$ (7)

将式 (5) 带入式 (7) 得,

$$\frac{\delta\omega}{\delta r} = -\frac{B_m B_l (\Delta k_{ml}(\omega)) \sin(\Delta k_{ml}(\omega)r)}{r B_m B_l (\frac{\partial \Delta k_{ml}(\omega)}{\partial \omega}) \sin(\Delta k_{ml}(\omega)r)}$$

$$= -\frac{(\Delta k_{ml}(\omega))}{r (\frac{\partial \Delta k_{ml}(\omega)}{\partial \omega})}$$
(8)

定义任意两号简正波的波导不变量参数 β_{ml} 为

$$\beta_{ml} = -\frac{1}{\omega} \frac{\Delta k_{ml}(\omega)}{\partial \Delta k_{ml}(\omega) / \partial \omega}$$
(9)

则式(8)可写成,

$$\frac{\partial \omega}{\delta r} = \beta_{ml} \frac{\omega}{r} \tag{10}$$

其中,波导不变量 β_{ml} 描述了声强距离 -频率图上干涉条纹的斜率。如果所有的 $I_{ml}(r,w)项具有近似相同的<math>\beta_{ml}$,那么每项 都将有近似斜率的条纹,那么总的声强 $I(r,\omega)$ 就可以由一个与模数无关的 β 描述。

2.2 波导不变量特征分析

对于浅海环境,其典型条纹样式如图 4 所示,通过理想波导环境的解析推导^[19]和大 量海上实验结果表明,浅海环境中,低频段 的波导不变量β近似为 1。

图 4 浅海环境下的干涉条纹仿真结果

为了研究深海中的干涉现象,采用了如 图 2 所示的深海环境,设定声源深度为 10 米,接收深度为 100 米,距离 120km,其中 会聚区范围 61-66km。图 5-图 7 给出了不同 距离的声强距离-频率干涉条纹图。其中图 5-图 7(a)给出的是简正波相速度 Cp<Cb时, 各距离声强距离-频率干涉条纹图,从图中 可以看出,深海波导环境中,近距离无明显 条纹,声影区和会聚区存在干涉条纹,且在 两个区域的干涉条纹样式不同。在影区内的 干涉结构和浅海环境中的相同,而在会聚区 区域内的干涉结构与浅海环境中观察的结 果相反。

进一步将简正波范围限制在水体之内,即简正波相速度 C_p<C_{wmax},各距离声强距离-频率干涉条纹图,如图 5-图 7(b)所示。

通过对比可以看出,在近距离声场,由于波 导简正波和海底反射简正波同时存在,干涉 条纹相互抵消,致使近距离声场声强较强, 但干涉条纹却不明显;影区内干涉条纹主要 是由海底反射模式形成;会聚区内,海底反 射简正波再次经海面反射后,衰减较大,因 此,会聚区内干涉条纹主要是由波导简正波 干涉形成,与前文传播损失分析结果一致。

或数值解。因此,利用相慢度和群慢度对任 意两号简正波的波导不变量 β_{ml}表达式(9) 进行重新定义。定义第 m 号简正波的相速 度和群速度分别为

$$v_m^p = \frac{\omega}{\mu_{rm}} \tag{11}$$

$$v_m^g = \frac{\partial \omega}{\partial \mu_{rm}} \tag{12}$$

相对应的相慢度和群慢度为

$$S_{p,m} = \frac{1}{v_m^p} = \frac{\mu_{rm}}{\omega} \tag{13}$$

$$S_{g,m} = \frac{1}{v_m^g} = \frac{\partial \mu_{rm}}{\partial \omega}$$
(14)

则波导不变量 β_{ml} 可表示为,

$$\beta_{ml} = -\frac{\Delta S_{p,ml}(\omega)}{\Delta S_{g,ml}(\omega)}$$
(15)

其中 $\Delta S_{p,m} = S_l$, $\Delta S_{g,ml} = S_{g,m} - S_{g,l}$ 。根据式(15),可以看出, 可以将声源频率 ω 所对应的1到L号简正波 的群慢度 $S_{g,m}$ 看成是随相慢度 $S_{p,m}$ 变化的

函数,即 $S_g(S_p)$ 。如果在某一区域内 $S_g(S_p)$ 函数可近似成一条直线,那么波导不变量 β 可以用该直线的斜率进行表示,且与简正波 号数无关,

$$\frac{1}{\beta(S_p)} = -\frac{dS_g}{dS_p} \tag{16}$$

图 8 给出了典型浅海波导环境下,相慢 度与群慢度的关系,图中 $S_s(S_p)$ 函数的斜率 比较稳定且为负,即波导不变量 β 为正;图 9 给出了典型深海声道环境中相慢度与群慢 度的关系,从图中可以看出, $S_s(S_p)$ 函数可 以分为两个区间,即波导简正波区间和海底 反射简正波区间。相慢度小于拐点的区间是 海底反射简正波、相慢度大于拐点的区间是 波导简正波,从 $S_s(S_p)$ 函数斜率可以看出, 海底反射简正波区间内的波导不变量 β 为 正值,波导简正波区间内的波导不变量 β 为 页值。结合波导不变量 β 估值范围可以对图 5-图 7 中干涉条纹现象进行解释,由于会聚 区主要是由波导简正波组成,而所对应的 β 值为负,与浅海相反,所以声强距离-频率 干涉条纹样式与浅海相反;而影区内,主要 是由海底反射简正波组成,对应的β值与浅 海相同,且近似为1,因此,影区内声强距 离-频率干涉条纹样式也与浅海相类似。

2.3 波导不变量特征应用

对于深海会聚区目标,由于接收器距离 声源较远,信号出现时间较短,方位变化率 又比较慢,导致会聚区目标的判别以及目标 运动态势判断都存在较大的困难,这也在一 定程度上限制了会聚区效应的应用。结合上 文对深海会聚区环境波导不变量特征的分 析,提出利用会聚区距离-频率干涉条纹特 征实施会聚区目标判定及目标运动态势判 断的方法。

通过对深海会聚区波导不变量特征的 分析,可以看出深海会聚区与近距离声场以 及声影区干涉条纹存在明显区别,而且在实 际深海环境中,会聚区与声影区可利用的条 件也存在差异。当海深满足会聚区形成条件 时,由于海水和海底对反射简正波的衰减, 影区内的信号衰减较为严重,目标信号难以 检测;当海深减小,无法形成会聚区时,大 量简正波通过海底反射在海面聚焦,影区内 信号强度增强,在直达波和会聚区距离之 间,形成海底反射会聚区,反射会聚区距离 受海深影响较大。因此,可以利用干涉条纹 特征对会聚区目标进行判断。

在深海环境,能形成会聚区条件下,声 源位置初步判断依据如下:

(1)噪声信号无干涉条纹,且方位变 化率快,判为疑似近距离目标;

(2)噪声信号存在干涉条纹,且方位 变化率慢,判为疑似会聚区目标。

初步判断为会聚区目标以后,可以通过 声强的距离-频率分布图中干涉条纹变化趋势进一步判断目标运动态势。当环境参数不 随水平距离改变时,(10)式可转化为

$$r = r_0 * \left(\frac{\omega}{\omega_0}\right)^{\frac{1}{\beta}} \tag{17}$$

可推导得

$$\frac{dr}{d\omega} = \frac{r_0}{\beta * \omega_0} * \omega^{\frac{1-\beta}{\beta}}$$
(18)

上式中 r_0 、 ω_0 均为正值,则干涉条纹 斜率的正负取决于 β 的正负。

因此,可以根据干涉条纹随距离-频率 的变化趋势对目标运动态势进行判断。在声 强距离-频率平面上建立坐标轴,定义某一 干涉条纹 P 与距离轴 y 的偏角 \u00c9,如图 10 所示。

在深海环境,判断为会聚区后,其目标 运动态势判断方法如下:

(1) *𝒫* < 90° 时,目标处于向接收器接近态势;

(2) *\$\varphi\$*>90°时,目标处于向接收器远 离态势。

图 10 距离-频率平面干涉条纹偏角

2.4 试验数据分析

结合某次东海试验数据,对上述会聚区 目标及运动态势初步判断方法进行验证。图 11(a)给出了深海近距离目标声强的距离-频 率分布图;图 11(b)给出了深海会聚区远离 态势目标声强的距离-频率分布图; 11(c)给 出了深海会聚区接近态势目标声强的距离-频率分布图。通过试验数据可以看出,深海 近距离声场不存在干涉条纹;会聚区区域存 在明显的干涉条纹,且β值为负值,不同运 动态势干涉条纹变化趋势不同,且与浅海相 反,所以,能够利用干涉条纹对目标运动态 势进行初步判断,试验结果与理论分析结果 一致。

图 11 深海试验数据干涉条纹图

3 结论

本文首先分析了会聚区声场形成条件 以及不同模式简正波对会聚区声场传播的 影响,在此基础上,基于波导不变量的理论, 对深海不同距离的声强距离-频率分布图中 的干涉条纹特征的性质进行了仿真分析,通 过仿真分析发现,深海波导环境中,近距离 无明显条纹,声影区和会聚区存在干涉条 纹,且两区域内的干涉条纹样式相反。深海 会聚区内的干涉条纹主要由波导简正波形 成,其对应的波导不变量β值为负,干涉条 纹样式与浅海相反,而且会聚区内处于不同

参考文献

- B.Jensen,W.A.Kuperman,M.B.Porter,etc.Computa tional Ocean Acoustics(Second Edition) [M].
 American Institute of Physics,2011,P21~P23.
- [2] Kimberly M. Freitas.Improving Accuracy of Acoustic Prediction in the Philippine Sea through Incorporation of Mesoscale Environmental Effects. AD REPORT. NAVAL POSTGRADUATE SCHOOL. JUNE 2008.
- [3] 吴炳昭,崔华义.射线声学法在会聚区调查中的 应用研究.[J] 海洋技术,2009,4: 52-53
- [4] Toby E. Schneider. Improving underwater vehicle communication in the littoral zone through adaptive vehicle motion. (A).J. Acoust. Soc. Am.125, 2581 (2009)
- [5] 李玉阳,笪良龙.海洋锋对深海会聚区特征影响研究.[J] 声学技术,2010,6:78-79
- [6] Stephen D. Lynch, Dependence of the structure of the shallow convergence zone on deep ocean bathymetry. (A).J. Acoust. Soc. Am.127, 1962 (2010)
- [7] 李佳讯,张韧.海洋中尺度涡建模及其在水声传播影响研究中的应用.[J] 海洋通报,2011,2: 38-45
- [8] Kevin D. Heaney, Detection performance modeling and measurements for convergence zone (CZ) propagation in deep water (A).J. Acoust. Soc. Am.130, 2530 (2011)
- [9] Stephen D. Lynch. Investigating sources of variability of the range and structure of the low frequency shallow convergence zone (A). J. Acoust. Soc. Am.130, 2555 (2011)
- [10] H. C. Song .Diversity combining for long-range

运动态势的目标,在声强距离-频率平面内 干涉条纹的偏角不同。利用会聚区干涉特征 提出了会聚区目标判定及运动态势判断方 法,通过仿真结果和海试数据初步验证了方 法的有效性,为深入研究会聚区环境效应及 其相关应用提供了新的思路。

acoustic communication in deep water.J. Acoust. Soc. Am.132, EL68 (2012)

- [11] Taehyuk Kang Long-range multi-carrier acoustic communication in deep water using a towed horizontal array.J. Acoust. Soc. Am.131, 4665 (2012)
- [12] Kevin D. Heaney, Towed array propagation measurements and modelling in the Philippine Sea (A).J. Acoust. Soc. Am.131, 3353 (2012)
- [13] Kevin D. Heaney, Deep water propagation measurements from a towed - array. (A).J. Acoust. Soc. Am.128, 2386 (2010)
- [14] Kevin D. Heaney, Detection performance modeling and measurements for convergence zone (CZ) propagation in deep water (A).J. Acoust. Soc. Am.130, 2530 (2011)
- [15] Sostrand K A.Range localization of 10-100 km explosions by means of an endfire array and a waveguide Invariant[J], IEEE J.Oceanic Eng., 2005, 30:207-212
- [16] 徐国军, 笪良龙, 李玉阳, 张林.低信噪比条件下引导源目标定位算法[J], 声学技术, 2010, 29(3):336-339.
- [17] 赵振东.浅海声场干涉结构与宽带声源测距研 究[D],中国海洋大学,2010.
- [18] G. L. D'Spain and W. A. Kuperman. Application of waveguide invariants to analysis of spectrograms from shallow water environments that vary in range and azimuth[J],J. Acoust. Soc. Am., 1999, 106(5):2454–2468.
- [19] L.M. Brekhovskikh and Yu.P. Lysanov. Fundamentals of Ocean Acoustics.AIP Press/Springer, New York, 3rd edition, 2003.

RESEARCH ON WAVEGUIDE INVARIANT CHARACTERS AND

APPLICATION IN DEEP-OCEAN CONVERGENCE ZONE

TANG Shuai, DA Liang-long, XU Guo-jun, CUI Bao-long

(Navy Submarine Academy, Qingdao 266071)

Abstract: In order to solve the problem how to judge whether target is in convergence zone (CZ) and the target movement in CZ, analyzing formation conditions of CZ and its acoustic propagation, characters of waveguide invariant in deep-ocean were analyzed based on waveguide invariant theory and simulation tests performed. The theoretical analysis and simulation results both show that there are special waveguide invariant striations in CZ and valve of its waveguide invariant β is negative. Making use of these characters, the method to judge whether target is in convergence zone (CZ) and the target movement in CZ is proposed and simulated. The simulation and experimental data both show that the judgment is valid.

Key words: Waveguide invariant ,CZ ,Target movement