Ca²⁺、Mg²⁺及盐度对凡纳滨对虾体内代谢酶的影响

张立田1,2, 戴习林1, 臧维玲1

(1. 上海海洋大学 水产与生命学院, 上海 201306; 2. 东海水产研究所, 上海 200090)

摘要:为探讨 Ca²⁺、Mg²⁺、盐度对凡纳滨对虾体内代谢酶的相对独立作用和相互影响,进而为提高凡 纳滨对虾生长力和免疫力提供理论依据,本实验采取L49(7⁸)安排7水平Ca²⁺、Mg²⁺、盐度,L8(2⁷)安排 2水平Ca²⁺、Mg²⁺、盐度,开展60d凡纳滨对虾(*Litopenaeus vannamei*)养殖试验,通过比较对虾体内消 化酶、ATP 酶及免疫类酶的活性以分析Ca²⁺、Mg²⁺、盐度对凡纳滨对虾生长力和免疫力的影响。结果 表明:水体中Ca²⁺、Mg²⁺、盐度对消化酶具有显著影响(P<0.05),其中与对虾消化吸收联系最紧密的蛋 白酶中,盐度对胃蛋白酶影响显著,盐度为10时酶活最高,Ca²⁺、盐度对类胰蛋白酶影响显著,Ca²⁺为 200 mg/L,盐度为20时,酶活最高;Ca²⁺、Mg²⁺、盐度对 ATP 酶具有显著影响(P<0.05),其中对 Na⁺-K⁺-ATP 酶都有显著影响,Ca²⁺为300 mg/L,Mg²⁺为500 mg/L,盐度为30 时酶活最高,Ca²⁺、Mg²⁺ 对Mg²⁺-ATP 酶具有显著影响,Ca²⁺为200 mg/L,Mg²⁺为500 mg/L 时酶活最高,Ca²⁺对Ca²⁺-ATP 酶具有 显著影响,Ca²⁺为200、300 mg/L 时酶活最高;Ca²⁺、Mg²⁺、盐度对凡纳滨对虾体内免疫酶具有显著影 响(P<0.05),Ca²⁺、Mg²⁺、盐度对ACP 都有显著影响,Ca²⁺为100 mg/L,Mg²⁺为150 mg/L,盐度为30 时 酶活最高,Mg²⁺对AKP具有显著影响,在150 mg/L 时酶活最高,Ca²⁺、盐度对SOD 酶活具有显著影响, Ca²⁺为100 mg/L,盐度为35 时酶活最高;Ca²⁺、Mg²⁺、盐度间的交互作用对体内代谢酶也有一定影响。

关键词:凡纳滨对虾(*Litopenaeus vannamei*);Ca²⁺; Mg²⁺; 盐度; 消化酶;ATP 酶;免疫类酶 中图分类号:S966.1 文献标识码:A 文章编号:1000-3096(2013)07-0063-09

凡纳滨对虾(*Litopenaeus vannamei*)俗称南美白 对虾,为当今世界养殖产量最高的虾类品种,其自 然分布区主要在东太平洋^[1]。凡纳滨对虾盐度适应范 围广,在海水和淡水水域中均能生长,但与海水养 殖相比,在淡水中生长速度较慢,抗病能力较差,这 与海水和淡水中离子成分及含量有关^[2-5]。海水中常 量离子成分和含量都比较稳定^[6],淡水离子种类及 含量与海水有一定差异,其中与对虾蜕壳和生长有 紧密联系的必需离子 Ca²⁺、Mg²⁺在淡水中的含量甚 低,世界河水中 Ca²⁺、Mg²⁺在淡水中的含量甚 低,世界河水中 Ca²⁺、Mg²⁺含量的平均值仅分别为 20.4 mg/L 与 3.4 mg/L^[7],远低于海水。因此,低盐、 低钙及低镁水体中凡纳滨对虾的生长力和抗病力就 成了学者和养殖业者关注的内容。

凡纳滨对虾生长力受多方面的影响,其中与食物 消化吸收有关的消化酶及与蜕壳紧密相关的 Na⁺-K⁺三 磷酸腺苷酶(Na⁺-K⁺-ATP 酶)、Ca²⁺三磷酸腺苷酶 (Ca²⁺-ATP 酶)、Mg²⁺三磷酸腺苷酶(Mg²⁺-ATP 酶)对其 生长力有很大影响^[8-10];凡纳滨对虾抗病力与其体内 免疫机制有关,凡纳滨对虾体内存在着可以诱导的非 特异性免疫防御系统,超过氧化物歧化酶(SOD)、酸性 磷酸酶(ACP)和碱性磷酸酶(AKP)等是体液防御系统中 的重要免疫因子^[11];关于 Ca²⁺、Mg²⁺及盐度对凡纳滨 对虾生长力与免疫力方面的研究已有一些报道,刘存 歧、沈丽琼等^[3,5,10]对 Ca²⁺,Mg²⁺或盐度对凡纳滨对虾 免疫类酶影响有过研究,但这些研究均甚少涉及 Ca²⁺、 Mg²⁺、盐度三因素在剔除两因素效应下对凡纳滨对虾 体内代谢酶的影响以及三者之间的交互作用。本试验 主要根据中国内陆不同养殖水体的水质类型,采用正 交试验探讨 Ca²⁺、Mg²⁺、盐度对凡纳滨对虾体内代谢 酶的相对独立作用和相互影响,进而为提高凡纳滨对 虾生长力和免疫力提供理论依据。

- 1 材料与方法
- 1.1 试验用虾及养殖试验池

试验用虾购自厦门海水淡化苗(盐度=2), 平均体

收稿日期: 2011-12-12; 修回日期: 2012-08-20

基金项目:上海市科技兴农重点攻关项目(沪农科攻字(2010)第1-6号); 上海市科技兴农科技推广项目(沪农科推字(2008)第5-1号);上海市教 育委员会重点学科建设项目(J50701)

作者简介: 张立田(1987-), 男, 山东潍坊人, 主要从事水产养殖技术 研究, E-mail: zhanglitian4847023@163.com; 戴习林, 通信作者, E-mail: xldai@shou.edu.cn

长=(0.800±0.028)cm, 平均体质量=(0.002±0.001)g, 暂养于 100 L 塑料箱备用。试验池为上海市金山区 申漕特种水产开发公司玻璃温室内的水泥育苗池 (3.50 m×7.15 m)。

1.2 试验基础用水与药品

试验基础用水为经沉淀过滤、杀菌消毒的养殖 场邻近三洪河河水,盐度 0.3, Ca²⁺为 50 mg/L, Mg²⁺ 为 20 mg/L。调配试验用水的化学药品分别为工业纯: NaCl(日晒盐)、CaCl₂·2H₂O、MgCl₂·6H₂O、KCl、NaBr、 H₃BO₃、Na₂SO₄。

1.3 试验设计

依据中国内陆不同地区地表水水质类型^[7]及预 试验结果,选择 L49(7⁸)正交表安排 Ca²⁺、Mg²⁺、盐 度 3 因素 7 水平试验,研究 3 者对凡纳滨对虾体内代 谢酶的相对独立影响,分析 3 个因子对凡纳滨对虾 代谢酶影响趋势;选择 L8(2⁷) 正交表安排 Ca²⁺、 Mg²⁺、盐度 3 因素 2 水平试验,考察 3 者之间的交互 作用,各试验组均设 1 个平行组,两正交表中各因素 水平分别列于表 1 和表 2。

表 1 L49(7⁸)中 Ca²⁺、Mg²⁺、盐度水平 Tab.1 Ca²⁺, Mg²⁺ and salinity levels in L49(7⁸)

7 k亚	因素							
71-	Ca ²⁺ (mg/L)	Mg ²⁺ (mg/L)	盐度(‰)					
1	30	10	0.3					
2	50	20	2					
3	100	150	5					
4	200	300	10					
5	300	500	20					
6	400	750	30					
7	500	1200	35					

注: 表 3, 表 4, 表 5 中的水平同表 1

表 2 $L8(2^7)$ 中 Ca^{2+} 、 Mg^{2+} 、盐度水平 Tab.2 Ca^{2+} , Mg^{2+} and salinity levels in $L8(2^7)$

⁊k 亚		因素	
小十 一	Ca ²⁺ (mg/L)	$Mg^{2+}(mg/L)$	盐度(‰)
1	50	20	0.3
2	400	1200	35

注:表 7,表 8 中的水平同表 2

1.4 试验方法

1.4.1 试验用水调配

除 L49(7⁸)中 Ca²⁺、Mg²⁺水平为 1 试验组的基准 水为经氢氧化钠处理降低钙镁含量,并调节 pH 后的 河水,其他试验组均以河水作为调配基准水。按试验 设计要求先调节 Ca²⁺、Mg²⁺水平,再以盐度为 35 自 然海水作为参照,依据臧维玲^[12]罗氏沼虾(*Macrobrachium rosenbergii*)育苗用水调配原则,按照设定 盐度比例分别添加其他离子(K⁺、Br⁻、H₃BO₃、SO₄²⁻), 最后以 NaCl(日晒盐)调节各试验组盐度水平,水深 50 cm,经充分曝气一周后用于试验。

1.4.2 试验用虾驯化与放养

各试验组受试虾苗约1000 尾分别在100 L 塑料箱 中驯养,每日早晚分别用各自调配水换水^[13]驯化,同时 每日早中晚各投虾片1次,并及时排出残饵污物。10 d 后驯化完毕,将各组驯化苗完全随机人工逐尾计数500 尾置于试验池中,平均体长 =(0.920±0.028) cm,平均 体质量 =(0.003±0.001)g。

1.4.3 日常管理

试验期间每天定时投喂配合饲料, 早期每日 4 次, 后期每日 3 次, 连续散气石充气增氧, 定期排污, 不 换水, 每隔 15 d 测量盐度及 Ca^{2+} 、 Mg^{2+} 含量, 及时 补充因蒸发所失基础水, 试验期间各水体中 TAN $0.1 mg/L, NO_2^-$ -N $\leq 0.005 mg/L$, 水温 $30.6\pm 1.4 \degree$ 。60 d 后准确计数各池存活虾数, 并分别准确测量体长与体 质量。

1.5 试验指标的测定

水体中 Ca²⁺、Mg²⁺含量测定采用络合滴定法进 行滴定^[5], 盐度采用德国 WTW 多参数水质分析仪 Multi 340i 测量。

成活率=试验结束时对虾尾数/试验开始时放养 尾数

体长日均增长=(试验结束时虾体均长 - 试验开 始时虾体均长)/养殖天数

日均增质量=(试验结束时虾体均质量 - 试验开 始时虾体均质量)/养殖天数

1.6 虾体组织酶活测定

蛋白酶活性采用福林-酚法测定^[14], 淀粉酶采用 3,5-二硝基水杨酸显色法(DNS 法)^[15], 脂肪酶采用 以聚乙烯醇橄榄油为底物的标准氢氧化钠溶液滴定 法^[16], 酶活测定组织取自凡纳滨对虾肝胰腺。

 Na^+-K^+-ATP 酶、 $Ca^{2+}-ATP$ 酶、 $Mg^{2+}-ATP$ 酶采 用南京建成生物研究所所配试剂盒进行测定, 规定 每小时每毫克组织蛋白的组织中 ATP 酶分解 ATP 产 生 1 μ mol 无机磷的量为一个 ATP 酶活力单位, 即微 摩尔分子磷/毫克蛋白/小时, 即: μ mol/(mg·h), 酶活 测定组织取自凡纳滨对虾鳃丝。

ACP、AKP、SOD 采用南京建成生物研究所所配 试剂盒进行测定, ACP、AKP 为每克组织蛋白在 37℃ 与基质作用 30 min 产生 1 mg 酚为一个活力单位(U), SOD 为每毫克组织蛋白在 1 mL 反应液中 SOD 抑制 率达 50%时所对应的 SOD 量为一个 SOD 活力单位(U), 酶活测定组织取自凡纳滨对虾肝胰腺。

蛋白含量测定采用考马斯亮蓝法进行测定。 酶的比活力=酶活力/组织蛋白含量

1.7 数据处理

采用 Excel2003 和 SPSS 17.0 进行数据整理和分 析。方差分析处理正交试验数据, Duncan 法均值多重 比较, 差异显著性设置为 *P* < 0.05。

2 结果

2.1 Ca²⁺、Mg²⁺、盐度对凡纳滨对虾存活 及生长的影响

 Ca^{2+} 、 Mg^{2+} 、盐度对凡纳滨对虾存活及生长的影响 见表 3。由方差分析知 Ca^{2+} 、 Mg^{2+} 、盐度对凡纳滨对虾 成活率均具有显著影响(P < 0.05)。由表 3 发现, Ca^{2+} 在 30~300 mg/L 时, 成活率呈抛物线趋势, 100 mg/L 时出现 第一个峰值, 400 mg/L 时为第二个峰值, 500 mg/L 时出现 第一个峰值, 400 mg/L 时为第二个峰值, 500 mg/L 成活率 降至 71.0%; Mg^{2+} 除 150 mg/L 外, 成活率基本呈递增之势, 1 200 mg/L 时成活率最高, 达到 79.6%(P < 0.05), 100 mg/L 时成活率最低, 仅为 53.3%; 盐度由 0.5 上升到 10 时成 活率逐渐升高, 此后随盐度增加逐渐降低。

表 3 Ca²⁺、Mg²⁺、盐度对凡纳滨对虾成活率、体长日均增长的影响

Tab.3 Effect of	Ca ²⁺ , Mg ²⁺	and salinity on	survival, gi	rowth and flave	or amino a	acids of <i>Lito</i>	penaeus vannamei
-----------------	-------------------------------------	-----------------	--------------	-----------------	------------	----------------------	------------------

		, 8	. , 9			1	
因素	水平	成活率(%)	体长日均增长	因素	水平	成活率(%)	体长日均增长
			(mm/d)			()	(mm/d)
	1	$55.4^{e} \pm 18.1$	$1.141^{d} \pm 0.081$		5	$70.8^{c}\pm18.0$	$1.218^{c} \pm 0.080$
	2	$64.2^{c}\pm 12.8$	1.255 ^{ab} ±0.111	Mg^{2+}	6	$73.8^{b}\pm9.8$	$1.237^{b}\pm 0.097$
	3	79.7 ^a ±4.7	$1.265^{a}\pm0.086$		7	$79.6^{a} \pm 7.2$	1.221°±0.068
Ca ²⁺	4	71.5 ^b ±19.2	1.238 ^c ±0.065		1	71.9 ^c ±10.5	$1.189{\pm}0.099$
	5	$58.5^{d} \pm 12.0$	$1.241^{bc} \pm 0.114$		2	$68.8^{d} \pm 14.7$	1.255±0.069
	6	$77.6^{a} \pm 10.1$	$1.243^{bc} \pm 0.076$		3	$77.7^{b}\pm 5.5$	1.201±0.066
	7	$71.0^{b} \pm 19.2$	$1.245^{bc} \pm 0.045$	S	4	79.9 ^a ±4.8	1.267±0.105
	1	$65.0^{e} \pm 16.7$	$1.244^{b}\pm0.107$		5	$63.8^{e} \pm 16.2$	1.263 ± 0.089
M-2+	2	65.5d ^e ±17.6	$1.180^{d} \pm 0.093$		6	$57.1^{f}\pm 20.4$	1.258 ± 0.114
Mg	3	$53.3^{f} \pm 16.9$	$1.309^{a} \pm 0.075$		7	$59.6^{f} \pm 18.5$	1.216 ± 0.069
	4	$70.5^{\circ} \pm 11.4$	1.221 ^c ±0.080				

注:同一指标数据的上标小写英文字母不同表示相互之间存在显著差异;S.盐度,以下表格相同

由方差分析知 Ca^{2+} 、 Mg^{2+} 对凡纳滨对虾体长日 均增长具有显著影响(P<0.05)。表 3 表明, Ca^{2+} 为 100mg/L 时其体长日均增长最快, 30 mg/L 时, 体长 日均增长值最小, 显著低于其余 Ca^{2+} 水平组; Mg^{2+} 为 150 mg/L 时生长速度最快, 50 mg/L 时生长速度最慢, $Mg^{2+} \ge 300$ mg/L 时其生长速度差别不大, 而 < 300 mg/L 时, 各水平组间对虾生长速度变化较大; 对虾生长与 盐度的关系呈抛物线状趋势, 生长速度在盐度为 10~20 时较快。

2.2 Ca²⁺、Mg²⁺、盐度对凡纳滨对虾体内 消化酶的影响

Ca²⁺、Mg²⁺、盐度对凡纳滨对虾体内消化酶的影 响见表 4。表 4 表明, Ca²⁺对类胰蛋白酶影响显著, 盐 度对胃蛋白酶、类胰蛋白酶具有显著影响, Mg²⁺对 4 种消化酶均没有显著影响。

由表 4 看出, 对胃蛋白酶的影响 Ca^{2+} 为 200 mg/L 时酶活较高, 500 mg/L 时酶活又达到一较高值, Mg²⁺ 在 300 mg/L 时酶活最低, 750 mg/L 时酶活最高, 盐 度低于 10 时, 酶活呈递增之势, 此后随盐度增加酶 活又逐渐降低, 30 时降到一较低水平, 而 35 时酶活 又达到一较高水平; 对类胰蛋白酶的影响 Ca^{2+} 高于 300 mg/L 时, 随 Ca^{2+} 增加酶活逐渐升高, Ca^{2+} 低于 300 mg/L 时酶活变化较大, 其中在 200 mg/L 时酶活 为最高值, 在 100 mg/L 和 300 mg/L 时酶活 人口。 mg/L 时, 随 Mg^{2+} 增加酶活逐渐升高, 1 200 mg/L 时酶活降至最低, 盐度低于 20 时, 随盐度增加酶活逐渐 升高, 此后随盐度增加酶活又稍有下降; 对淀粉酶

Tab.4	Effect of	Ca ²⁺ , Mg ²⁺ and	salinity on dig	estive enzymes	s, ATP enzym	es specific activi	ty of <i>L. vannam</i>	ei
因素	水平	胃蛋白酶	类胰蛋白酶	淀粉酶	脂肪酶	Na ⁺ -K ⁺ -ATP	Mg ²⁺ -ATP	Ca ²⁺ -ATP
	1	1.22±0.39	4.53°±0.92	4.02±0.91	0.56 ± 0.08	8.70 ^c ±3.79	$6.59^{d} \pm 1.77$	6.43 ^c ±1.07
	2	1.37 ± 0.35	$4.90^{bc} \pm 0.93$	4.39±0.49	0.73±0.28	$9.85^{a}\pm 2.61$	$9.48^{b} \pm 3.00$	$8.11^{b}\pm 2.69$
	3	1.51 ± 0.64	$4.37^{c} \pm 1.60$	4.19±1.57	0.69±0.23	$9.85_{a}\pm 3.32$	$9.35^{b}\pm 2.55$	$8.41^{b} \pm 2.91$
Ca^{2^+}	4	1.63 ± 0.64	$5.53^{a} \pm 0.94$	4.62±1.14	0.67 ± 0.18	$8.86^{c} \pm 1.23$	$10.66^{a} \pm 3.29$	$11.34^{a}\pm 3.18$
	5	1.37 ± 0.70	$4.37^{c}\pm1.44$	4.62±1.89	0.57 ± 0.25	$10.05^{a}\pm4.48$	8.29 ^c ±2.38	$11.42^{a}\pm 3.95$
	6	1.35 ± 0.37	$4.74^{c}\pm0.55$	4.15±1.14	$0.59{\pm}0.23$	$9.03^{bc}\pm 2.92$	$8.03^{c}\pm 2.78$	$8.57^{b}\pm4.17$
	7	1.55 ± 0.50	$5.27^{ab}\pm0.99$	5.16±0.97	0.53±0.22	$9.28^{b} \pm 4.00$	$7.72^{c}\pm 2.82$	$6.75_{c}\pm 2.40$
	1	1.36 ± 0.36	4.97±1.13	4.03±1.04	0.72 ± 0.24	8.21 ^c ±2.34	$6.95^{d}\pm 2.60$	7.18±2.55
	2	1.47 ± 0.67	4.92 ± 1.24	3.89±1.33	0.68±0.21	$8.30_{c}\pm 3.38$	$7.50^{\circ} \pm 1.54$	7.69±3.33
	3	1.23 ± 0.42	4.57 ± 0.60	4.56±1.13	0.60 ± 0.20	$10.29^{b}\pm 2.94$	$9.53^{b} \pm 3.11$	9.56±4.31
Mg^{2+}	4	$1.20{\pm}0.71$	4.74±1.47	4.43±1.42	0.59 ± 0.24	$11.31^{a}\pm 3.07$	$9.07^{b}\pm 2.84$	9.07±3.43
	5	1.62 ± 0.21	4.92±1.11	5.20 ± 0.80	0.54±0.17	11.73 ^a ±4.17	$10.63^{a}\pm 2.88$	9.49±3.19
	6	$1.72{\pm}0.47$	5.29±1.32	4.58±1.55	0.60 ± 0.22	$7.50^{d} \pm 2.04$	$7.57^{c} \pm 1.49$	8.50±3.18
	7	$1.40{\pm}0.61$	4.30 ± 0.89	4.45±1.12	0.62 ± 0.27	$8.05^{c}\pm 2.87$	$7.76_{c} \pm 1.27$	7.90±1.66
	1	$1.06^{d} \pm 0.26$	$4.01_{c}\pm 0.99$	3.95 ^c ±1.29	0.68 ± 0.27	$7.94^{d}\pm2.49$	7.43±2.10	6.82 ± 1.70
	2	$1.10^{d} \pm 0.26$	$4.61^{b} \pm 0.51$	$4.60^{b} \pm 1.32$	0.73±0.24	$8.17_{d} \pm 4.38$	7.46±2.26	9.22±4.14
	3	$1.52^{bc} \pm 0.63$	$4.73^{b} \pm 1.46$	$4.86^{ab} \pm 1.23$	0.70±0.16	$9.87^{b} \pm 2.79$	9.83±2.85	9.68±3.28
S	4	$1.76^{a} \pm 0.62$	$5.32^{a} \pm 1.37$	$4.70^{ab} \pm 1.32$	0.60±0.26	8.93 ^c ±2.33	9.45±2.17	8.84±1.57
	5	$1.56^{b} \pm 0.41$	$5.32^{a} \pm 1.18$	5.17 ^a ±0.82	0.56±0.20	$9.81^{b} \pm 4.88$	7.82±3.14	8.30±4.53
	6	$1.37^{c}\pm0.49$	$4.80_{b}\pm1.21$	3.91 ^c ±1.55	0.50 ± 0.08	$10.52^{a}\pm3.10$	7.75±2.78	7.21±2.28
	7	$1.64^{ab}{\pm}0.58$	$4.91^{ab}{\pm}0.64$	3.97°±0.52	0.56 ± 0.25	$10.15^{ab}\pm 2.13$	9.27±1.80	9.33±3.17

表 4 Ca²⁺、Mg²⁺、盐度对凡纳滨对虾消化酶、ATP 酶比活力影响

注: 消化酶比活单位: U/mg; ATP 酶比活单位: μmol/(mg·h)

的影响 Ca²⁺为 30 mg/L, Mg²⁺为 20、60 mg/L 时酶活 最低, Ca²⁺为 500 mg/L 、Mg²⁺为 500 mg/L 时酶活最 高, 而盐度对酶活影响呈抛物线状, 20 时酶活最高; 对脂肪酶的影响 Ca²⁺为 50 mg/L , Mg²⁺为 20 mg/L, 盐度为 2 时酶活最高, Ca²⁺为 30 mg/L, Mg²⁺为 500 mg/L, 盐度为 30 时酶活最低。

Ca²⁺、Mg²⁺、盐度对凡纳滨对虾 ATP 酶的影响

 Ca^{2+} 、 Mg^{2+} 、盐度对凡纳滨对虾 ATP 酶的影响 见表 4。表 4 表明, Ca^{2+} 对 Na^+ -K⁺-ATP 酶、 Mg^{2+} -ATP 酶、 Ca^{2+} -ATP 酶酶活都有显著影响, Mg^{2+} 对 Na^+ -K⁺-ATP 酶、 Mg^{2+} -ATP 酶酶活具有显著影响, 而 盐度仅对 Na^+ -K⁺-ATP 酶酶活影响显著。

由表 4 看出 Ca²⁺对 Na⁺-K⁺-ATP 酶影响呈波浪趋势, 50、100、300 mg/L 时酶活较高, 30、200、400、500 mg/L 时酶活较低,其中 Ca²⁺为 300 mg/L 时酶活 最高, 30mg/L 时酶活最低, Mg²⁺对 Na⁺-K⁺-ATP 酶的 影响在低于 500 mg/L 时,随 Mg²⁺增加酶活逐渐升高, 高于 500mg/L 时酶活又有较大幅度下降,其中在 750 mg/L 时酶活最低, 盐度对 Na⁺-K⁺-ATP 酶的影 响在低于 30 时,基本随盐度增加而逐渐升高,盐度 为 5 除外、盐度为 5 时酶活较高、而在盐度达到 35 时酶活较盐度为 30 时略有下降; Ca²⁺对 Mg²⁺-ATP 酶 的影响趋势呈抛物线趋势、30mg/L 时酶活最低、 200 mg/L 时酶活最高, Mg²⁺对 Mg²⁺-ATP 酶影响也 基本呈一抛物线趋势,其中 20 mg/L 时酶活最低, 500 mg/L 时酶活最高、盐度对 Mg²⁺-ATP 酶影响除 35 外也呈一抛物线趋势,在 0.5 时酶活最低, 10 时酶活 最高,而 35 时酶活达到一较高水平; Ca²⁺对 Ca²⁺-ATP 酶影响呈抛物线趋势、30 mg/L 时酶活最 低, 200、300 mg/L 时酶活最高, Mg²⁺对 Mg²⁺-ATP 酶影响也基本呈抛物线趋势、20 mg/L 时酶活最低、 150 mg/L 时酶活最高, 而盐度对 Ca²⁺-ATP 酶影响趋 势与盐度对 Mg²⁺-ATP 酶酶活影响趋势相同, 0.5 时酶 活最低、5 时酶活最高。

2.4 Ca²⁺、Mg²⁺、盐度对凡纳滨对虾体内 免疫酶的影响

Ca²⁺、Mg²⁺、盐度对凡纳滨对虾体内免疫酶的影

响见表 5。表 5表明, Ca^{2+} 对 ACP、SOD 酶活具有显 著影响, Mg^{2+} 对 ACP、AKP 酶活有显著影响, 而盐度 对 AKP、SOD 酶活影响显著。

由表 5 看出,对 ACP 影响, Ca²⁺为 100 mg/L 时酶 活最高, 30 mg/L 时酶活最低, Mg²⁺在 150 mg/L 时酶 活最高, 1200 mg/L 时酶活最低, 20、60 mg/L 时酶活 也较低,而在高于 150 mg/L 时随 Mg²⁺增加酶活基 本呈逐渐下降之势,盐度为 5 时酶活最低,高于 10 时对酶活的影响差别不大,而由 0.5 增加到 5 时酶 活逐渐降低; 对 AKP 影响,Ca²⁺对 AKP 影响基本呈 递减之势, Mg²⁺对 AKP 影响呈抛物线趋势, 150 mg/L 时酶活最高, 1 200 mg/L 时酶活最低, 而盐度对 AKP 影响呈递增之势; 对 SOD 影响,Ca²⁺低于 100 mg/L 时随 Ca²⁺增加酶活逐渐升高, 100~300 mg/L 时随 Ca²⁺增加酶活逐渐降低, 在 400、500 mg/L 时酶活 波动较大, 但酶活仍然较高, Mg²⁺对 SOD 影响除 1200 mg/L 外酶活呈抛物线趋势, 盐度对 SOD 影响 呈递增之势。

表 5 Ca²⁺、Mg²⁺、盐度对凡纳滨对虾免疫类酶比活力影响

Tab.5	Effect of Ca ²⁺ ,	Mg ²⁺ , salinity	on immune	enzymes specific	activity of	L. vannamei
-------	------------------------------	-----------------------------	-----------	------------------	-------------	-------------

因素	水平	ACP	AKP	SOD	因素	水平	ACP	AKP	SOD
	1	$6.20^{d} \pm 1.92$	5.32 ± 2.50	$6.09^{d} \pm 1.85$		5	$8.10^{b} \pm 1.35$	4.61 ^{bc} ±1.42	7.35±2.94
	2	$6.22^{d}\pm 2.05$	5.81±3.04	$6.52^{d} \pm 1.89$	$M\alpha^{2+}$	6	$6.67^{d}\pm 2.49$	$4.84^{b}\pm 2.08$	6.90±2.18
Ca ²⁺	3	8.23 ^a ±2.61	5.01 ± 1.40	$8.88^{a}\pm 2.67$	Ivig	7	$5.31^{e} \pm 1.63$	$3.02^{d} \pm 0.94$	8.77±1.30
	4	$7.58^{b} \pm 1.97$	4.47 ± 1.04	$7.88^{b}\pm 2.36$		1	$7.34^{a}\pm2.4$	4.07 ± 0.84	$6.25^{d}\pm1.28$
	5	$7.52^{b}\pm 2.06$	3.96 ± 0.86	7.23°±2.29		2	$6.47^{b}\pm 2.31$	3.92±1.73	$6.72^{d}\pm 2.08$
	6	$7.86^{ab} \pm 1.85$	4.00 ± 2.20	$8.80^{a} \pm 1.86$		3	$5.81^{\circ}\pm2.12$	3.93±1.43	$7.57^{c}\pm2.15$
	7	6.73°±2.51	$3.92{\pm}0.79$	$7.94_{b}\pm 2.65$	S	4	7.62 ^a ±2.95	4.09±1.44	$7.78^{bc} \pm 2.07$
	1	7.17 ^c ±2.19	$4.07^{c}\pm 0.97$	6.36±2.75	5	5	$7.48^{a}\pm 2.48$	4.25±1.00	$8.15^{b} \pm 3.42$
N . ²⁺	2	$6.23^{d}\pm 2.39$	$4.24^{c}\pm1.62$	7.74±1.43		6	$7.65^{a} \pm 1.97$	5.81±1.72	$8.03^{b}\pm 2.34$
Mg	3	$8.83^{a} \pm 1.53$	$6.08^{a}\pm 2.93$	8.42±2.61		7	$7.59^{a} \pm 1.66$	5.80±3.16	$8.81^{a}\pm 2.54$
	4	$7.67^{b}\pm 2.86$	$5.01^{b} \pm 1.24$	7.76±2.72					

注: ACP、AKP、SOD 比活单位: U/mg

2.5 Ca²⁺、Mg²⁺、盐度对酶活影响极差分析

Ca²⁺、Mg²⁺、盐度对酶活影响极差分析见表 6。表 6 表明, Ca²⁺对 Mg²⁺-ATP 酶、Ca²⁺-ATP 酶、SOD 影响最 大, Mg²⁺对类胰蛋白酶、淀粉酶、Na⁺-K⁺-ATP 酶、ACP、 AKP 影响最大, 盐度对胃蛋白酶、脂肪酶影响最大。

2.6 Ca²⁺、Mg²⁺、盐度及其交互作用对凡 纳滨对代谢酶影响

Ca²⁺、Mg²⁺、盐度及其交互作用对凡纳滨对虾消 化酶影响见表 7、表 8。

表 7 表明, Ca^{2+} 与 Mg^{2+} 、 Ca^{2+} 与盐度、 Mg^{2+} 与盐度 之间的交互作用对凡纳滨对虾胃蛋白酶酶活都没有显 著影响, 而对类胰蛋白酶酶活都有显著影响, Ca^{2+} 与盐 度、 Mg^{2+} 与盐度之间的交互作用对淀粉酶酶活具有显著 影响, Ca^{2+} 与 Mg^{2+} 间的交互作用对脂肪酶酶活具有显著 影响; Ca^{2+} 与 Mg^{2+} 间的交互作用对脂肪酶酶活具有显著 影响; Ca^{2+} 与 Mg^{2+} 、 Mg^{2+} 与盐度之间的交互作用对凡纳 滨对虾 Na^{+} -K⁺-ATP 酶酶活具有显著影响, Ca^{2+} 与盐度间 交互作用对 Mg^{2+} -ATP 酶酶活具有显著影响, Ca^{2+} 与盐 度、 Mg^{2+} 与盐度间的交互作用对 Ca²⁺-ATP 酶酶活具有 显著影响; 表 8 表明, Ca²⁺与 Mg^{2+} 、Ca²⁺与盐度、 Mg^{2+} 与盐度间的交互作用对 ACP 酶活都有显著影响, 而对 AKP 酶活及 SOD 酶活都没有显著影响。

表 6 Ca²⁺、Mg²⁺、盐度对酶活影响极差分析

to enzyme activity of L. vannamer									
 而米		因素极差							
- 時大 · · ·	Ca ²⁺	Mg^{2+}	S						
胃蛋白酶	2.83	3.61	4.84						
类胰蛋白酶	8.13	9.20	6.92						
淀粉酶	7.99	9.19	8.57						
脂肪酶	1.44	1.29	1.60						
Na ⁺ -K ⁺ -ATP	9.05	29.59	18.04						
Mg ²⁺ -ATP	28.49	25.75	16.83						
Ca ²⁺ -ATP	34.99	16.65	20.01						
ACP	23.17	36.40	20.86						
AKP	11.37	21.38	15.72						
SOD	18.92	16.83	17.92						

Tab.6 Range analysis of effect of Ca^{2+} , Mg^{2+} and salinity

表7 Ca²⁺、Mg²⁺、盐度间交互作用对凡纳滨对虾消化酶及 ATP 酶影响

Tab.7 The i	nteracti	on effect of Ca	a²', Mg²', salini	ty on digestive	enzymes and	ATP enzymes s	pecific activity	of L. vanname
因素	水平	胃蛋白酶	类胰蛋白酶	淀粉酶	脂肪酶	Na ⁺ -K ⁺ -ATP	Mg ²⁺ -ATP	Ca ²⁺ -ATP
C_{2}^{2+}	1	1.76 ± 0.52	5.41±0.90	4.48 ± 0.51	$0.74^{a}\pm0.18$	10.42 ± 1.57	$11.31^{a} \pm 1.75$	$11.31^{a}\pm0.61$
Ca	2	$1.50{\pm}0.67$	5.39 ± 1.34	4.45±1.96	$0.56^{b}\pm0.15$	9.75±3.34	$8.16^{b} \pm 3.41$	$9.36^{b} \pm 4.85$
M_{-}^{2+}	1	$1.23^{b}\pm 0.57$	$4.54^{b}\pm0.76$	4.03±0.25	0.62±0.10	12.17 ^a 1.74	$11.25^{a}\pm 3.60$	10.12±4.20
Mg	2	2.03 ^a ±0.30	$6.27^{a} \pm 0.74$	4.91±1.92	0.68±0.24	$7.99^{b} \pm 1.44$	$8.32^{b} \pm 1.46$	10.52 ± 2.85
c	1	1.73±0.68	$5.28{\pm}1.88$	$5.14^{a}\pm1.78$	0.68 ± 0.23	$0.62^{a} \pm 4.00$	10.58 ± 3.83	12.42 ^a ±4.20
3	2	1.52 ± 0.47	5.52 ± 1.02	$3.80^{b} \pm 1.91$	0.61 ± 0.20	9.54b±2.01	8.99±1.70	8.23 ^b ±4.22
$C a^{2+} \times M a^{2+}$	1	1.81 ± 0.57	$5.65^{a}\pm1.28$	4.52±1.93	$0.50^{b} \pm 0.06$	$9.01^{b}\pm 2.69$	9.86±3.10	10.43 ± 2.77
Ca ×ivig	2	1.45 ± 0.60	$5.15^{b}\pm 0.92$	4.42 ± 0.60	$0.80^{a}\pm0.14$	$11.08^{a} \pm 2.15$	9.71±3.12	10.22±4.26
$C a^{2+} \times S$	1	1.71±0.33	$4.99^{b} \pm 0.78$	$3.97^{b} \pm 1.10$	0.62 ± 0.19	10.07 ± 2.21	$8.33^{b}\pm 2.50$	$7.69_{b} \pm 3.22$
Ca ×s	2	1.55 ± 0.79	$5.81^{a} \pm 1.29$	$4.97^{a} \pm 1.55$	0.68 ± 0.18	10.10 ± 2.99	$11.23^{a}\pm 2.99$	$12.96^{a} \pm 1.24$
$Ma^{2+} \times S$	1	1.68 ± 0.64	$4.86^{b} \pm 1.01$	$3.58^{b} \pm 0.80$	0.67 ± 0.19	$11.15^{a}\pm 2.83$	10.62 ± 2.65	$10.96^{a} \pm 3.23$
Mg ×S	2	1.58±0.57	5.95 ^a ±1.00	$5.36^{a}\pm1.37$	0.63±0.18	$9.02^{b} \pm 1.88$	8.95±3.31	$9.69^{b} \pm 3.82$

消化酶比活单位: U/mg, ATP 酶比活单位: μmol/(mg · h)

表 8 Ca²⁺、Mg²⁺、盐度间交互作用对凡纳滨对虾免疫类酶比活力影响

ab.8 1	the interaction effe	ect of Ca ²⁺ , I	Mg ² and	salinity on im	imune enzymes	specific acti	vity of <i>L</i> .	vannamei
--------	----------------------	-----------------------------	---------------------	----------------	---------------	---------------	--------------------	----------

因素	水平	ACP	AKP	SOD	因素	水平	ACP	AKP	SOD
$\begin{array}{cccccccc} Ca^{2+} & 1 & 8.61^a \pm 1.32 & 5.32 \pm 0.88 & 8.80 \pm 2.75 \\ 2 & 7.46^b \pm 1.27 & 4.40 \pm 1.18 & 8.10 \pm 2.82 \end{array}$	1	$8.61^{a} \pm 1.32$	5.32 ± 0.88	8.80±2.75	$C a^{2+} \times M a^{2+}$	1	$7.00^{b} \pm 0.75$	4.59±1.19	$7.80{\pm}2.48$
	8.10 ± 2.82	Ca ×Mg	2	$9.07^{a}\pm1.10$	5.13±1.02	9.10±2.95			
M_{-}^{2+}	1	8.11±0.85	5.29±1.25	$9.74^{a}\pm 2.39$	$C = 2^+ \times S$	1	$8.71^{a} \pm 1.59$	5.32±1.26	9.22±3.03
wig	2	7.95 ± 1.82	4.43 ± 0.82	7.16+±2.58	Ca ×S	2	$7.36^{b} \pm 0.78$	4.40 ± 0.77	7.68 ± 2.31
C	1	8.22±2.80	4.71±1.71	$7.26^{b} \pm 3.29$	$Mg^{2+} \times S$	1	$7.67^{b} \pm 0.75$	4.90±1.27	9.49±1.95
8	2	7.85±1.34	5.02±1.21	$9.64^{a} \pm 3.06$		2	$8.39^{a}\pm1.80$	4.82 ± 0.99	7.41±3.12

3 讨论

3.1 Ca²⁺、Mg²⁺、盐度对凡纳滨对虾生长 力的影响

虾类的生长是通过蜕皮来实现阶梯式增长的, Dall 等^[17]研究发现对虾类体内没有钙的储存机制, 蜕皮 后早期钙化所需钙必须从水中吸收获得, 如果水体 中 Ca²⁺、Mg²⁺浓度较低, 蜕皮后表面钙化困难, 生长 缓慢, 且当水体中 Ca²⁺、Mg²⁺浓度达到凡纳滨对虾生 长的合适范围时, 虾体通过离子调节过程中耗能较 少, 其生长速度便较快^[18-19]。Panikkar^[20]关于对虾渗 透压研究得出盐度影响凡纳滨对虾的渗透压调节, 如果盐度过高或过低会使得渗透压调节的耗能增加, 能量转换效率降低, 从而导致其生长速度减慢。 Ca²⁺、Mg²⁺、盐度对凡纳滨对虾的生长有着重要的作 用, 对其体内消化酶和 ATP 酶的活性也有重要的影 响, 酶活作为凡纳滨对虾生长的一个指标其活性高 低可以判断凡纳滨对虾生长状况。

消化酶作为动物消化吸收的辅助因子对动物生

长具有重要作用,对凡纳滨对虾消化酶的研究,多数 集中于消化酶种类、性质、幼体发育不同阶段的酶活 力变化以及饵料对消化酶活力的影响等方面^[8,21-22]、 关于 Ca²⁺、Mg²⁺及盐度对消化酶影响报道较少。从本 试验结果看 Ca²⁺、Mg²⁺、盐度对与凡纳滨对虾消化 吸收联系最紧密的蛋白酶都有显著影响。比较盐度 对 4 种消化酶影响与盐度对生长影响可以看出消化 酶酶活的高低与生长速度紧密相连,结果表明盐度 为10时凡纳滨对虾生长速度最快,而恰好盐度为10 时 4 种消化酶酶活都最高、因此消化酶的活性可以 很好地作为凡纳滨对虾生长指标、据此也可以推测 在凡纳滨对虾饲料中适当添加一定的消化酶酶活制 剂能有效促进凡纳滨对虾生长; 极差分析表明 Mg²⁺ 对类胰蛋白酶影响最显著,在 Mg²⁺高于 150 mg/L 时 其对凡纳滨对虾生长的影响与对类胰蛋白酶酶活的 影响规律基本相似, Mg²⁺为 750 mg/L 时生长最快, 而在 Mg^{2+} 低于150 mg/L时对凡纳滨对虾生长的影响 与对类胰蛋白酶酶活的影响规律差别较大,此可能 与水体中 Mg²⁺含量太低受其他离子影响所致, 而交 互作用试验表明 Ca²⁺与 Mg²⁺交互作用对类胰蛋白酶 具有显著影响,而在离子水平较低时此影响可能更 大; Ca²⁺对类胰蛋白酶影响显著,但折线图看出 Ca²⁺ 对类胰蛋白酶影响没有一定规律,与 Ca²⁺对凡纳滨 对虾生长的影响规律差别较大,此可能与交互作用 有关, Ca²⁺与 Mg²⁺, Ca²⁺与盐度之间的交互作用对类 胰蛋白酶酶活都有显著影响。

三磷酸腺苷酶(ATP 酶)是一族酶、它是 Na⁺-K⁺ 泵、 Ca^{2+} 泵、 H^+ 泵的构成成分、与机体渗透压紧密相 连、在物质的跨膜转运中是一种非常重要的酶^[23]、 本试验中 Ca²⁺、Mg²⁺、盐度对 Na⁺-K⁺-ATP 酶都有显 著影响。比较 Ca²⁺凡纳滨对虾生长影响可以看出除 Ca²⁺为 300 mg/L 外 Ca²⁺对 Na⁺-K⁺-ATP 酶酶活的影响 与 Ca²⁺对生长影响规律基本一致、此可能与 Na^+-K^+-ATP 酶对 Ca^{2+} 吸收与排放有关; Mg^{2+} 是 Na⁺-K⁺-ATP 酶的激活剂,试验中 Mg²⁺为 500 mg/L 时 酶活最高、这与刘存歧等^[10]研究结果相同。Mg²⁺太 低和太高时酶活都很低,且 Mg²⁺太低时其生长速度 也较慢、因此适当增加淡水水体中 Mg²⁺对酶激活有 显著作用、同时促进了生长。盐度对酶影响基本呈递 增之势,但盐度过高却限制了凡纳滨对虾生长,这 正好表明高盐下 Na⁺-K⁺-ATP 酶耗能影响了对虾生长, 因此在淡水养殖条件下应适当增加盐度。关于 Mg²⁺-ATP 酶、Ca²⁺-ATP 酶的研究报道很少见、此两 种酶主要是促进 Ca^{2+} 、 Mg^{2+} 的吸收、本试验中 Ca^{2+} 、 Mg²⁺、盐度对 Mg²⁺-ATP 酶、Ca²⁺-ATP 酶影响基本 都呈抛物线状、即 Ca²⁺、Mg²⁺及盐度过高和过低都会 降低 Mg²⁺-ATP 酶、Ca²⁺-ATP 酶活性, 进而限制 Ca²⁺、 Mg²⁺吸收。

3.2 Ca²⁺、Mg²⁺、盐度对凡纳滨对虾免疫 力的影响

Dall 等^[17]提出水体中 Ca²⁺、Mg²⁺、盐度对凡纳 滨对虾存活具有重要影响,对虾类的表皮薄而柔软, 在淡化养殖水体中, Ca²⁺、Mg²⁺等离子含量较低,对 虾难以吸收足够的 Ca²⁺、Mg²⁺维持正常的生理功能, 从而影响对虾的存活,本次试验结果与之一致, Ca²⁺、Mg²⁺、盐度均显著影响凡纳滨对虾的存活,而 成活率的高低可以由对虾体内免疫指标进行衡量, ACP、AKP 和 SOD 等作为对虾体液防御系统中的重 要免疫因子,其活性高低反映了虾体免疫力强弱。刘 存歧, 刘丽静^[7]等在试验中证实 Ca²⁺、Mg²⁺ 对凡纳 滨对虾体内 SOD 和 AKP 的活性有重要的影响。盐 度作为一种外源刺激和环境胁迫因子可以引起无脊 椎动物相关免疫指标及机体抵抗力变化[11]。

AKP 和 ACP 均为磷酸单酯酶、对钙质吸取、骨骼 形成、磷酸钙化、甲壳素的分泌形成等都具有重要作 用^[24]。ACP 广泛分布于动物组织中、在酸性环境下起 到吞噬异物作用^[4],本试验中 Ca²⁺、Mg²⁺、盐度对 ACP 都有显著影响、 Ca^{2+} 、 Mg^{2+} 对 ACP 影响基本呈抛物线 状, Ca²⁺为 100 mg/L, Mg²⁺为 150 mg/L 时酶活最高, 这 与 Ca²⁺对凡纳滨对虾成活率影响一致, 但与 Mg²⁺对凡 纳滨对虾成活率相反,这可能与交互作用有关,试验 中得出 Mg²⁺与 Ca²⁺间、Mg²⁺与盐度之间的交互作用对 ACP 都有显著影响, 而盐度对 ACP 酶活的影响在盐度 高干 10 时酶活基本稳定在同一值, 变化不大, 这与盐 度对存活的影响稍有差别, 而在盐度低于 10 时酶活变 化较大这与盐度对存活影响类似,此可能盐度较低受 交互作用影响较大; AKP 是一种含锌的对底物专一性 较低的磷酸单酯水解酶^[25], Muhammad^[26]根据试验证 实蜕皮后的罗氏沼虾碱性磷酸酶活性显著高于蜕皮间 期以增加钙镁的吸收、本试验中 Mg²⁺对 AKP 酶活具有 显著影响, 比较 Mg²⁺对 AKP 酶活影响与 Mg²⁺对成活 率的影响可以看出两者变化规律相差较大, Mg²⁺过高 限制了 AKP 酶活, 而此时成活率较高, 这可能是其他 免疫因子起到了关键作用、其具体原因还有待进一步 研究。SOD 是一种与机体免疫相关的酶, 可以消除体 内产生的自由基^[27]. 本试验中 Ca²⁺和盐度对 SOD 具有 显著影响, Ca²⁺对酶活影响规律与对凡纳滨对虾成活率 影响规律类似,而盐度对酶活影响与对成活率影响差 别较大、盐度高时酶活较高而此时成活率较低、此可 能主要与凡纳滨对虾渗透压调节有关。

综上,本研究所用消化酶类、三磷酸腺苷酶类及 免疫类酶均与水体中 Ca²⁺、Mg²⁺及盐度有着紧密联 系,因此它们活性的高低可做为检测水中离子浓度 是否适合凡纳滨对虾存活与生长发育的重要指标, 以判断对虾的机能状态。

参考文献:

- [1] 张伟权.世界重要养殖品种 南美白对虾生物学简介[J].海洋科学,1990,14(3):69-73.
- [2] 谢达祥,陈晓汉.水体中钙和镁对凡纳滨对虾幼体成活率和生长的影响[J].水利渔业,2007,27(5):46-51.
- [3] 刘存歧,刘丽静,张亚娟,等.基于卤水的养殖用水
 中 Ca²⁺/Mg²⁺对凡纳滨对虾生长及体内 SOD 和 AKP
 的影响[J].水产科学,2007,26(2):67-69.
- [4] 梁萌青, 王士隐, 王家林, 等. 海水养殖与低盐养殖

凡纳滨对虾生长性能、酶活及 RNA/DNA 比值的差异 [J].海洋水产研究, 2007, 29(4): 69-75.

- [5] 沈丽琼,陈政强,陈昌生,等.盐度对凡纳滨对虾生 长与免疫功能的影响[J].集美大学学报,2007,12(2): 108-113.
- [6] Stumm W, Morgan J J. 水化学: 天然水体化学平衡导 论[M].北京:科学出版社, 1987.
- [7] 雷衍之,减维玲.养殖水环境化学[M].北京:中国农业出版社,2004.
- [8] 朱春华,李广丽,文海翔.南美白对虾早期幼体消化 酶活力研究[J].海洋科学,2003,27(5):54-57.
- [9] 潘鲁青,刘志,姜令绪.盐度、pH 变化对凡纳滨对 虾鳃丝 Na⁺-K⁺-ATPase 活力影响[J].中国海洋大学学 报,2004,34(5):787-790.
- [10] 刘存歧,刘丽静,王军霞,等.盐碱地渗水钙镁离子
 对凡纳滨对虾酶活力的影响[J].动物学杂志,2007,
 42(2):129-133.
- [11] 曹剑香,简纪常,吴灶和.虾类体液免疫研究进展[J].湛江海洋大学学报,2006,26(1):89-93.
- [12] 臧维玲, 戴习林, 张建达, 等.罗氏沼虾育苗水中 Mg²⁺
 和 Ca²⁺含量及 Mg²⁺/Ca²⁺对出苗率的影响[J] 海洋与湖
 沼, 1995, 26(5): 552-557.
- [13] 臧维玲,林喜臣,戴习林.淡化方式与盐度对凡纳对 虾幼虾生长的影响[J].上海水产大学学报,2003, 12(4):308-312.
- [14] 刘玉梅,朱谨钊,吴厚余,等.中国对虾幼体和仔虾
 消化酶活力及氨基酸组成的研究[J].海洋与湖沼, 1991,22(6):571-575.
- [15] 刘玉梅,朱谨钊.对虾消化酶的研究[J].海洋科学, 1984,8(5):46-50.
- [16] 潘鲁青,王克行.中国对虾幼体消化酶活力的试验研究[J].水产学报,1997,21(1):26-32.
- [17] Dall W, Smith D M. Ionic regulation of four species of

panacid prawn[J]. Journal of Experimental Marne Biology and Ecology . 1981, 55: 219-232 .

- [18] Digby P S B . Calcification in crustacean: the fundamental process[J] . Physiologist, 1980, 23: 105.
- [19] Dong S L, Du N S, Lan W . Effects of pH and Ca²⁺ concentration on growth and energy budget of *Macrobrachium nipponense*[J] . Fish China, 1994, 18(2):118-122.
- [20] Panikkar N K. Osmotic behavior of shrimps and prawns in relation to their biology and culture[J]. FAO Fish Rep, 57: 527-538.
- [21] 陈楠生.对虾生物学[M].青岛:青岛海洋大学出版 社,1992:172-175.
- [22] 杨奇慧,周存歧,马丽莎,等.凡纳滨对虾幼体胃蛋白酶和类胰蛋白酶活力的研究[J].海洋科学,2005,29(5):6-9.
- [23] Towle D W, Palmer G E, Harris J L. Role of gill Na⁺, K⁺-ATPase in acclimation of blue crab, *Callinectes sapidus*, low salinity[J] . J Exp Zoo, 1976, 196: 315- 322.
- [24] 顾德平,方卫星,叶维明.对虾淡化驯化存活率的观察[J].水产科技情报,1998,25(1):35-36.
- [25] Blasco J, Puppo J, Sararsquete M. Acid and alkaline phosphates activities in the champ *Ruditapes philipinarum*[J]. Mar. Biol. 1993, 115: 113- 118.
- [26] Muhammad A L. Effects of environment alkalinity on calcium-stimulated dephosphodating enzyme activity in the gills of postmoult and intermoult giant freshwater prawns *Macrobrachium rosenbergii*(de Man)[J]. Comp Biochem Physic, 1992, 107A(4): 597-601.
- [27] Dalla Via . Salinity response in bricks water popularations of the freshwater shrimp *Palaemonetes antenarius* I . Oxygen consumption[J] . Comp Biochem Physic, 1987, 87(2): 471-478.

研究报告 REPORTS

Effect of Ca²⁺, Mg²⁺ and salinity on metabolic enzymes of *Li*topenaeus vannamei

ZHANG Li-tian^{1,2}, DAI Xi-lin¹, ZANG Wei-ling¹

(1. College of Fisheries and Life, Shanghai Ocean University, Shanghai 201306, China; 2. East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China)

Received: Dec.,12,2011

Key words: Litopenaeus vannamei; Ca²⁺; Mg²⁺; salinity; digestive enzymes; ATP enzymes; immune enzymes

Abstract: The L49(7⁸) orthogonal experimental design was used to investigate the three factors Ca²⁺, Mg²⁺ and salinity in water, and seven levels of each factor were based. The L49(7⁸) orthogonal experimental design was used to investigate the three factors Ca²⁺, Mg²⁺ and salinity in water, and two levels of each factor were based. In order to analyze the effect of Ca²⁺, Mg²⁺ and salinity in water on the growth performance and immunity of *L. vannamei*, the digestive enzymes, ATP enzyme and immune enzymes were compared during the 60 d culture cycle. Results showed that Ca²⁺, and salinity had significant effect on digestive enzymes(*P*<0.05), the salinity had significant effect on pepsin, and the Ca²⁺ and salinity had significant effect on tgryptase. Ca²⁺, Mg²⁺ and salinity had significant effect on ATP enzymes(*P*<0.05), and Ca²⁺, Mg²⁺ and salinity had significant effect on Na⁺-K⁺-ATPase, with maximum activity at Ca²⁺ a00 mg/L, Mg²⁺ 500 mg/L and salinity 30. Ca²⁺ and Salinity had significant effect on immune enzymes(*P*<0.05), and Ca²⁺, Mg²⁺ and salinity had significant effect on ACP, with maximum activity at Ca²⁺ 100 mg/L, Mg²⁺ 150 mg/L and salinity had significant effect on ACP, with maximum activity at 150 mg/L. Ca²⁺ and salinity 30. Mg²⁺ had significant effect on ACP, with maximum activity at 150 mg/L. Ca²⁺ and salinity had significant effect on ACP, with maximum activity at 150 mg/L. Ca²⁺ and salinity had significant effect on ACP, with maximum activity at 150 mg/L. Ca²⁺ and salinity had significant effect on Ca²⁺, Mg²⁺ and salinity at Ca²⁺ 100 mg/L, Salinity 30. Mg²⁺ had significant effect on ACP, with maximum activity at 150 mg/L. Ca²⁺ and salinity had significant effect on ACP, with maximum activity at 150 mg/L. Ca²⁺ and salinity had significant effect on ACP, with maximum activity at 150 mg/L. Ca²⁺ and salinity had significant effect on SOD, with maximum activity at Ca²⁺ 100 mg/L, salinity 35. The interaction of Ca²⁺, Mg²⁺,

(本文编辑: 谭雪静)