茅尾海夏季海水与表层沉积物叶绿素 a 空间分布研究

廖秀丽^{1,2}, 黄洪辉^{1,3}, 刘华雪^{1,2}, 戴 明^{1,3}, 于 杰^{1,2}, 田梓杨¹

(1. 中国水产科学研究院 南海水产研究所, 广东 广州 510300; 2. 农业部南海渔业资源环境科学观测实验站, 广东 广州 510300; 3. 广东省渔业生态环境重点实验室, 广东 广州 510300)

> 摘要:根据 2011 年 6 月茅尾海生态环境调查资料,对该海域海水和表层沉积物中叶绿素 a 的空间分布 进行了分析。结果表明,海水叶绿素 a 变化范围 1.384~4.060 mg/m³,平均值为 2.143 mg/m³,表层沉积 物叶绿素 a 范围为 0.006~0.740 mg/kg(湿重),均值为 0.124 mg/kg;海水与表层沉积物叶绿素 a 均呈现 自河口向南逐渐降低的空间分布特征。单位面积表层沉积物叶绿素 a 平均含量为上方水柱叶绿素 a 平 均含量的 129.44%,沉积物对该海域初级生产力有显著的潜在贡献。相关分析表明,海水和沉积物叶绿 素 a 均与无机氮及底栖动物栖息密度呈显著或极显著的正相关关系(P<0.05 或 P<0.01)。

关键词: 叶绿素 a; 沉积物; 茅尾海中图分类号: Q143 文献标识码: A

海水叶绿素 a(Chlorophyll a, Chl-a)浓度是表征 海域中光合浮游生物现存生物量的重要指标^[1],也 是估算初级生产力的主要参数之一。脱镁叶绿酸 a(Phaeophorbide a, Pha)是叶绿素 a 降解产物的主要 形式。沉积物中 Chl-a 的含量关系到底栖动物的食 物来源和底质环境的质量,Pha 的含量预示着底质 中死亡植物的量^[2-5],它们是底栖生态系统的重要 环节,对能量流动和食物链研究起重要作用。关于 水体 Chl-a 的研究很多,但关注沉积物 Chl-a 的研究 较少,已有的报道主要集中于潮间带区域^[6-9],对大 洋区域沉积物 Chl-a 的研究也有报道^[10-13],但针对 近岸浅海并把水体和沉积物 Chl-a 结合研究的报道 很少^[14-15]。

茅尾海为钦州湾北部的一个内湾,海域面积约 134 km²,潮流属不规则全日潮,年均潮差 2.40 m^[16]。 海域北部有茅岭江、钦江和大榄江三条径流注入, 河流携带来的泥沙,在河口区附近沉积而不断向海 推进前展,形成大片沙质和淤泥质浅滩,海岸滩涂 资源非常丰富,是集红树林、海草床和盐沼等多种 多样的海洋生态景观于一体的独特的河口型海湾 生态系统。本文根据 2011 年 6 月在茅尾海的现场观 测数据,探讨观测海区夏季水体和沉积物 Chl-a 浓 度的分布特征及环境因子对 Chl-a 分布的影响,为 茅尾海生物海洋学研究及海洋生态环境管理提供 基础资料。 文章编号: 1000-3096(2013)05-0001-09

1 材料与方法

1.1 采样站位

2011 年 6 月, 在茅尾海海域进行了水环境、沉 积环境和海洋生态现场调查, 设 16 个站位(图 1)。站 位的布设主要依据海洋监测规范^[17]中的均匀布点原 则, 兼顾河流入汇处、海湾中部及湾海交汇处, 并考 虑茅尾海的养殖生产状况, 其中 S3、S5、S10、S13 毗邻牡蛎吊养区, S1 位于茅尾海最南端(钦州湾湾颈), S11、S14、S15、S16 靠近河口。

1.2 环境参数及水体叶绿素 a

温度、盐度用 YSI 556 MPS 型多功能水质仪现 场测定,透明度用 Secchi 圆盘作同步观测。悬浮物 (SS)、无机氮(DIN)、活性磷酸盐(DIP)、Chl-a 用有 机玻璃采水器采集表层(0.5 m)水样,大型底栖生物 用抓斗式采泥器采集沉积物样品,按海洋监测规 范(GB17378-2007)^[17]进行室内分析。沉积物粒度分 析根据海洋调查规范(GBT 12763-2007)中激光法^[18]

Marine Sciences / Vol. 37, No. 5 / 2013

收稿日期: 2012-06-05; 修回日期: 2012-10-25

基金项目:中央级公益性科研院所基本科研业务费专项资金项目 (2012TS01);"十二五"国家科技支撑计划(2011BAD13B02)

作者简介: 廖秀丽(1979-), 女, 广东茂名人, 助理研究员, 硕士, 主要 从事渔业生态环境及浮游生物学研究, 电话: 020-89108301, E-mail: xiuliliao@163.com; 黄洪辉, 通信作者:研究员, E-mail: jxhuanghh@21cn.com, 020-89108307.

图 1 采样站位示意图 Fig. 1 The sampling stations

1.3 沉积物叶绿素 a

用"大洋 50 型"采泥器(开口面积为 0.05 m²)采集 沉积物样品,取表层 0~5 cm 泥样供 Chl-a 浓度分析。 根 据 张 培 玉^[5]的 测 定 方 法 并 参 考 国 标 (GB17378-2007)^[17]中水体 Chl-a 的测定,本研究用以 下的方法提取和测定底泥的 Chl-a:底泥样品解冻后, 称取 5 g 湿样于 50 mL 的塑料离心管中,加入 30 mL 90%的丙酮,低温避光超声 15 min,于4 下萃取 20 h,3 000 r/min 低温离心 15 min,取上清液定容至 50 mL 待测;测定仪器为 Turner-10-AU 荧光仪; Chl-a 标准来自本实验室培养的新鲜硅藻(中肋骨条藻 *Skeletonema costatum*),以三色法确定其浓度;采用 王荣 1986^[19]年提出的修正公式,计算沉积物中 Chl-a 和 Pha 的含量。

1.4 数据分析

水柱及表层沉积物叶绿素 a 含量分别按以下公 式计算:

$$C(Chl-a)_{w} = [Chl-a]_{w} \times D$$
(1)

 $C(Chl-a)_{s} = [Chl-a]_{s} \times T \times \rho_{S}$ (2)

 $\rho_{\rm S} = \rho_Z \times (1 - \omega_{\rm H_2O}) + \rho \times \omega_{\rm H_2O}$ (3)

(1)式中 C(Chl-a)_w代表水柱 Chl-a 含量(mg/m²),
 [Chl-a]_w 为表层水体 Chl-a 浓度(mg/m³), D 为水深
 (m);

(2)式中 $C(Chl-a)_s$ 代表表层(0~5 cm)沉积物 Chl-a 含量(mg/m²), [Chl-a]_s 为沉积物 Chl-a 含量 (mg/kg 湿重), T为沉积物厚度(本文取 0.05 m), ρ_s 为 沉积物密度(kg/m³);

(3)式中 ρ_Z 为海洋沉积物干密度(取值^[20-21]2.7×10³ kg/m³), $\omega_{H_{2}O}$ 为沉积物含水率(%), ρ 为间隙水的密 度(取值 1.0×10³ kg/m³)。

数据分析和作图在 Arcgis 10、Excel 2010、Spss 18.0(Pearson 相关分析)中进行。

2 结果

2.1 水环境特征

调查水域水温变化范围为 26.72~30.22 ,平 均值为(29.33±0.64) ;盐度变化范围为 0.05~21.67, 平均值为(11.66±6.05);透明度变化范围为 0.2~1.8 m, 平均值为(1.0±0.4) m; 悬浮物变化范围为 2.1~25.0 mg/L,平均值为(15.9±7.6) mg/L。空间分布特征,水 温和盐度均为从河口向海域中部递增后再向南轻微 下降(图 2-a,图 2-b),透明度自北向南递增(图 2-c), 悬浮物浓度从河口往湾口方向迅速降低(图 2-d)。

海 区 营 养 物 质 丰 富, 无 机 氮 变 化 范 围 25.00~53.57 μmol/L, 最高值约为最低值的 2 倍,海 域平均浓度高达(34.33±7.66) μmol/L, S16 和 S14 分 别位于钦江的两个入海口, 无机氮浓度出现最高值 (53.57 μmol/L)和次高值(47.86 μmol/L),向南浓度降 低(图 2-e)。活性磷酸盐变化范围为 0.65~2.58 μmol/L, 最 大 值 约 为 最 小 值 的 4 倍,海域 平均 浓 度 为 (0.91±0.53)μmol/L,茅岭江口的 S10 出现最大值 (2.58 μmol/L), S11 居第二位(1.61 μmol/L),其余站位 差异小(图 2-f)。无机氮与活性磷酸盐浓度的比值(N/P) 见表 1,除 S10、S11 比例明显较低外,其余站位差异 不大,空间分布特征为河口区高而南部低。

对水体中的各环境参数作相关性分析,结果显示,水温分别与盐度、透明度极显著正相关(*P*<0.01, *n*=16,下同),与活性磷酸盐极显著负相关(*P*<0.01); 盐度与透明度极显著正相关(*P*<0.01),与无机氮、活 性磷酸盐显著负相关(*P*<0.05);透明度与活性磷酸盐

海洋科学 / 2013 年 / 第 37 卷 / 第 5 期

Marine Sciences / Vol. 37, No. 5 / 2013

极显著负相关(*P*<0.01); N/P 比值分别与无机氮、活 性磷酸盐浓度呈极显著正、负相关(*P*<0.01)。

2.2 底栖生物栖息密度和沉积物粒度分析
 茅尾海大型底栖生物栖息密见表1,其变化范围
 为 150.03~800.16 个/m²,海域均值为(268.80±157.19)

个/m², 最高栖息密度出现在钦江口的 S16, 海域中

表 1 水体 N/P、底栖生物和沉积物粒度数据 Tab. 1 Data of N/P, benthos and sediment-size

部的 S7 次之, 其余站位数值相近。总体而言底栖生 物在整个海域的数量分布较均匀。

沉积物粒度分析数据如表 1。海域南部站位 (S1~S7)的砾含量均检出且普遍高于北部站位,而粒 径较细的粉砂、黏土比例则相反。绝大多数站位沉 积物均以砂为主要组分。

站位	NL/D	底栖生物栖息密度		々称		
	N/P	(\uparrow/m^2)	砾	砂	粉砂+黏土	百小
S1	39.86	200.04	19.414	56.801	23.785	中砂
S2	55.36	150.03	49.233	50.767	—	砾砂
S3	36.90	200.04	7.273	92.727	—	中粗砂
S4	23.80	300.06	39.127	50.676	10.198	砾砂
S5	56.46	216.71	10.201	87.273	2.527	中粗砂
S6	43.18	216.71	5.939	94.061	—	粗中砂
S 7	38.75	450.09	20.395	78.568	1.037	砾砂
S 8	40.96	166.70	—	40.473	59.527	砂-粉砂-黏土
S 9	45.39	216.71	—	71.207	28.793	中细砂
S10	12.46	266.72	8.500	43.761	47.739	粉砂质砂
S11	19.49	200.04	—	84.826	15.174	细中砂
S12	50.93	200.04	—	93.371	6.629	粗中砂
S13	43.18	250.05	4.702	63.254	32.044	粉砂质砂
S14	74.18	233.38	—	86.813	13.187	中细砂
S15	58.68	233.38	8.195	48.720	43.085	粉砂质砂
S16	83.04	800.16	—	80.757	19.243	中细砂

2.3 水体和沉积物叶绿素 a 分布特征

水体 Chl-a 浓度范围为 1.384~4.060 mg/m³, 平均 值为(2.143±0.768) mg/m³, 浓度高值出现在海域北 部三条河流注入茅尾海并开始扩散的冲淡水稀释区, 在海域西南部亦出现小范围高值区(图 3)。最大 Chl-a 浓度为 4.060 mg/m³, 在大榄江口和钦江口外的 S16 出 现。Chl-a 浓度的空间分布自北向南逐渐降低, 离河流 越远浓度越低; 低值出现在东南部的淡水龙至辣椒槌 海域。海域中部、南部 Chl-a 浓度较低且分布均匀。

茅尾海夏季表层沉积物 Chl-a 空间差异明显(图 4), 16 个调查站位其变化范围为 0.006~0.740 mg/kg (湿重,下同),均值(0.124±0.179) mg/kg; S16 的含量 显著高于其他站位,达 0.740 mg/kg, S13、S14 次之, Chl-a 含量分别为 0.256 mg/kg 和 0.214 mg/kg,其余 站位均低于 0.2 mg/kg, S2 特别低,仅 0.006 mg/kg。 总叶绿素(Chl-a+Pha)变化范围为 0.065~1.421 mg/kg, 平均为(0.445±0.368) mg/kg; 其中 S2、S3、S5~S7、 S12 数值介于 0.065~0.166 mg/kg 之间,含量较低; S4、S8~S11、S14、S15 变化范围为 0.401~0.579 mg/kg, 含量中等; S1、S13、S16 含量较高,分别为 0.910、 0.866、1.421 mg/kg。Chl-a 在总叶绿素中所占比例从 9.17%至 52.08%不等,平均占 27.86%。表层沉积物 中 Chl-a 与总叶绿素的变化趋势基本一致,均大致呈 现从河口向南部递减的趋势。

根据 1.4 的公式计算出的茅尾海各站位水柱及 沉积物 Chl-*a* 含量见表 2。表层厚度为 5 cm 的沉积 物,每平方米面积上的 Chl-*a* 含量(即 C(Chl-*a*)_S)北部 明显高于南部,靠近河口的区域高于海域中部及南 部,海域平均(14.20±20.99) mg/m²。水柱 Chl-*a* 含量 (即 C(Chl-*a*)_w)受水深的影响呈现北低南高的趋势, 均值为(10.97±5.49) mg/m²。沉积物表层 Chl-*a* 平均 占其上方水柱 Chl-*a* 的 129.44%。

图 3 水体叶绿素 a 空间分布图 Fig. 3 The spatial distribution of Chl-*a* contents in the water

- 3 讨论
- 3.1 径流对茅尾海叶绿素 a 空间分布的影响 入海河流携带大量淡水、泥沙、污染物等, 降低

了河口区的盐度和透明度^[22],改变了底质环境,增 加了水体的营养物质供给,促进浮游植物的生长。调 查期间茅尾海河口区透明度普遍不足 1.0 m,但在此 透明度低值区却出现了本次调查的 Chl-a 高值,相关 分析显示水体 Chl-a 含量与透明度呈现一定程度的 负相关(表 3),而与悬浮物含量呈正相关。尽管光是 影响海洋中浮游植物光合作用速率的重要理化因子, 直接影响着海水中 Chl-a 浓度的分布状况^[23],但本 次水体 Chl-a 只测定了表层(0.5 m)的浓度,光线都能 透过,光对浮游植物的光合作用影响不大。本研究表 明海区水体的 Chl-a 浓度与盐度显著负相关(*P*<0.05), Chl-a 数值较高的站位多出现在河口低盐区域,显示 受河流的影响大。

本次调查河口区水体的无机氮、活性磷酸盐浓 度均明显高于南部海域,且海域的 N、P 浓度均高于 限制浮游植物生长的浓度阈值(N 浓度为 1 µmol/L, P 浓度为 0.1 µmol/L^[24,25]),浮游生物的生长不存在 N、 P 的营养盐限制。调查海域 N/P 比值平均为 35.34,明 显高于最适合浮游植物生长的比值 16^[26],可理解为 N 相对过剩或 P 的潜在性限制。不同区域 N/P 比值 存在差异,海域中部(S6~S9)和南部(S1~S5)均值相 近,分别为 42.07 和 42.48,北部河口区(S10~S16)均 值为 48.85,明显高于中部和南部海域,表明河流输 入了更多的无机氮。值得注意的是,茅岭江口的 S10、S11 其 N/P 比值(12.46、19.49)明显低于海域的 其他站位,这两个站的活性磷酸盐含量特别高,造 成这种差异的原因可能是由于茅岭江接纳的主要是

Fig. 4 The contents of Chl-a in the surface sediments

Marine Sciences / Vol. 37, No. 5 / 2013

~)

Tab.2 Chl-a contents of water column and surface sediments									
站位	水深 (m)	$[Chl-a]_w$ (mg/m ³)	$C(Chl-a)_{w}$ (mg/m ²)	$[Chl-a]_{S}$ (mg/kg)	C(Chl- (mg/n				
S1	11.2	1.962	21.97	0.114	13.3				
S2	8.7	1.384	12.04	0.006	0.78				

表 2 水柱及表层沉积物叶绿素 a 含量

站位	(m)	(mg/m^3)	(mg/m^2)	(mg/kg)	(mg/m^2)	$C(Chl-a)_{S}/C(Chl-a)_{W} \times 100\%$
S1	11.2	1.962	21.97	0.114	13.38	60.87
S2	8.7	1.384	12.04	0.006	0.78	6.48
S3	11.2	1.536	17.20	0.020	2.31	13.45
S4	2.8	2.816	7.88	0.136	15.78	200.17
S5	15	1.584	23.76	0.019	2.08	8.76
S6	3.8	2.360	8.97	0.015	1.74	19.35
S 7	4.2	1.432	6.01	0.051	6.30	104.82
S 8	4.8	1.460	7.01	0.074	7.84	111.85
S9	4.5	1.472	6.62	0.058	6.59	99.48
S10	8.7	1.416	12.32	0.084	8.09	65.70
S11	2.9	2.940	8.53	0.089	10.35	121.43
S12	4.9	2.020	9.90	0.025	2.96	29.92
S13	2.5	2.500	6.25	0.256	28.17	450.71
S14	3.2	2.880	9.22	0.214	24.89	270.04
S15	2.6	2.460	6.40	0.081	8.93	139.63
S16	2.8	4.060	11.37	0.740	87.03	765.56
海域均值	5.9	2.143	10.97	0.124	14.20	129.44

注: [Chl-a]w、[Chl-a]s分别表示水体、沉积物叶绿素 a 浓度(含量); C(Chl-a)w、C(Chl-a)s分别表示水柱、表层 5 cm 厚沉积物的叶绿素 a 含量

农业污染(氮肥、磷肥等),而大榄江和钦江流经市区, 接纳的主要是生活污水(含磷洗涤剂已被限制使用), 因而大榄江和钦江河口区的 S12~S16 的 N/P 比值均 值(62.00)显著高于茅岭江口的 S10、S11。相关分析 显示、水体 Chl-a 浓度与无机氮显著正相关(P < 0.05)、 与 N/P 比存在一定程度的正相关关系, 与磷酸盐相 关性差、表明尽管水体中的氮、磷营养盐浓度高于浮 游植物生长的阈值,但无机氮含量的升高在一定程 度上仍能促进浮游植物的生长繁殖。

与历年夏季的调查结果^[27]相比发现,从 2003 年 至 2010 年. 夏季茅尾海水体 Chl-a 浓度普遍低于 5.0 mg/m³(2009年例外, 高达 7.0 mg/m³, 当时可能发生 了赤潮), 其中 2003 年、2007 年、2008 年、2010 年 平均浓度均小于 2.0 mg/m³;本次调查海区均值为 2.143 mg/m³, 位于历年调查的变化范围内且与多数年 份的调查数值相近、显示茅尾海海域夏季 Chl-a 浓度较 为稳定。营养盐数据显示^[27],从 2003 年至本次调查时 止,海域 N/P 的数值均高于最适合浮游植物生长的 16: 1、磷可能对浮游植物的生长繁殖起潜在的限制作用, 因而总体上海域的水体 Chl-a 浓度不高。

茅尾海位于茅岭江、大榄江钦江的河口、夏季海

域中部涨、落潮平均流速^[28]分别为 0.67 和 1.09 m/s, 在潮流及径流的共同作用下, 自北向南沉积物逐渐 变粗, 表现为沉积物中细颗粒含量北部高于南部, 从而对表层沉积物中总叶绿素的含量产生一定的影 响。从 2.3 的分析中得知, S2、S3、S5、S6、S7、S12 这6个站位的沉积物表层Chl-a及总叶绿素含量均较 低, 而相对应的细颗粒含量(粉砂+黏土)亦低(比例范 围为 0~6.629%),其他站位的比例均在 10%以上,最 高达 59.527%。相关分析显示, 底泥的细颗粒含量与 总叶绿素浓度存在一定的正相关关系,但与 Chl-a 浓 度不具明显相关性。这与姚晓等^[29,30]的研究结果相 似, 即底栖微型藻类在颗粒较细的沉积物中更易积 聚和生长。

在自然条件下、表层沉积物与上方的水体存在 沉积、悬浮等相互作用。分析 16 个站沉积物叶绿素 与部分水质因子的相关关系(表 1)后发现, 沉积物 Chl-a 与水体无机氮、N/P 存在极显著或显著的正相 关关系(P < 0.01 或 P < 0.05), 而沉积物总叶绿素与 无机氮显著正相关(P < 0.05), 这表明沉积物叶绿素 在一定程度上受河流输入的无机氮的影响, 而与光 照、河流冲淡水、磷酸盐的关系不明显。此外,沉积 物 Chl-*a* 与水体 Chl-*a* 具极显著正相关关系(P < 0.01), 与长江河口的研究结果一致^[22],显示水体 Chl-*a* 浓 度较高,对应的表层沉积物 Chl-*a* 含量亦高。而 2.3 的结果显示表层沉积物($0 \sim 5$ cm)中 Chl-*a* 含量甚至高 于其上方水柱 Chl-*a* 含量,研究结果支持了 Richard(2000)^[14]的观点,即若单以水柱中 Chl-a 含量 来估算初级生产力,结果可能偏低。

综上所述,河口区高浓度营养盐特别是无机氮 的输入,成为水体和表层沉积物中浮游植物生长繁 殖的重要影响因素。

表 3 Chl-a 与部分环境参数的相关性(r 值)

Tab. 3	Correlation	coefficient between	Chl-a contents and	some environmental	parameters ((r)
--------	-------------	---------------------	--------------------	--------------------	--------------	-----

项目	DIN	DIP	N/P	盐度	透明度	SS	底栖生物 栖息密度	水体 Chl-a	粉砂黏土 比例
水体 Chl-a	0.600*	-0.075	0.399	-0.510*	-0.483	0.465	0.602*	-	-0.052
沉积物 Chl-a	0.677**	-0.098	0.525*	-0.324	-0.307	0.353	0.857**	0.788**	0.139
沉积物总叶绿素	0.530*	0.059	0.268	-0.260	-0.269	0.141	0.635**	0.670**	0.382

注: "*"表示显著相关(P < 0.05); "**"表示极显著相关(P < 0.01)

3.2 茅尾海底栖生物、养殖贝类与叶绿素 a 的关系分析

水体中的浮游植物会沉降至海底从而给底栖生物提供食物来源,因而水体 Chl-a 浓度高的地方表层沉积物 Chl-a 含量亦较高,底栖生物出现的数量也多,表现为茅尾海 16 个站位大型底栖生物的栖息密度与水体 Chl-a 浓度显著正相关(P<0.05)。沉积物中 Chl-a 及总叶绿素均与底栖生物栖息密度呈极显著的正相关关系(P<0.01),显示底栖生物作为底层食物链的关键环节,通过自身的转化加速营养物质的分解,供应底栖藻类生长所需,并通过自身对底质的搅动把埋藏于表层之下的藻类带至上层,减少藻类由于泥砂沉降而逐渐被深埋的量,而藻类中的 Chl-a 会因深埋过程中的黑暗和缺氧而降解为 Pha。本研究表明,茅尾海底栖生物对沉积物中 Chl-a 含量的保持起促进作用,与张培玉^[5]在渤海湾的研究结果一致。

在河口地区,由于悬浮泥沙的沉积、悬浮、再沉 积又再悬浮过程使得表层沉积不稳定,从正上方水 柱中沉淀下来的浮游植物及其碎屑残体未能得到适 宜的生存环境,或被泥沙沉积物掩埋或随泥沙再悬 浮而重新回到水体中,因而沉积物中的 Chl-a 浓度较 低。若沉积物总叶绿素中 Pha 占大部分,则说明沉积 物表层光合生物的细胞活性较低^[22]。长江口沉积物 表层 Chl-a 含量均值为(0.089±0.052) mg/kg,占总叶 绿素的比例为 9.79%^[30],与之相比,茅尾海底质 Chl-a 含量(均值 0.124 mg/kg)约为长江口的 1.4 倍, Chl-a 在总叶绿素中的比例(27.86%)约为长江口的 3 倍,说明茅尾海潜在生产力明显高于长江口。从 90 年代末开始,茅尾海的贝类养殖蓬勃发展,几乎遍 布整个海区^[31],对浮游植物的摄食强度日益增强, 贝类的强滤食作用对浮游植物生长的抑制作用^[32], 使海水中 Chl-a 浓度普遍不高,茅尾海从 2003 年至 2011 年夏季水体 Chl-a 浓度普遍较低证明了这点; 但贝类显著加速了水体中颗粒物的沉积过程(Giles 和 Pilditch 的研究^[33]显示贝类介导的生物沉积速度 可达自然沉积速度的 40 倍),部分未被分解的浮游植 物随贝类的粪或假粪沉降到水底,这对沉积物表层 Chl-a 有较大的贡献。

4 结论

茅尾海夏季具有水浑、营养物质丰富、叶绿素 a 浓度一般的独特生态特征。2011 年夏季观测海域水体的叶绿素 a 浓度高值出现在径流注入茅尾海的河口区域,往南及远离河流的方向浓度逐渐降低,海域表层沉积物叶绿素 a 和总叶绿素含量亦呈现出类似的空间分布特征。水体、沉积物叶绿素(a)均与无机氮浓度及底栖生物栖息密度呈显著或极显著的正相关关系(P<0.01 或 P<0.05),表明河流输入的营养盐促进了海区浮游植物的生长,而水体 Chl-a 浓度的升高促使其下方的表层沉积物 Chl-a 含量增加,为底栖物提供更丰富的食物来源,表现为更高的栖息密度。0~5 cm 沉积物叶绿素 a 含量超过其上方水柱叶绿素 a 的含量,显示沉积物对海域初级生产力有显著的潜在贡献。

参考文献:

 [1] 郑国侠, 宋金明, 戴纪翠, 等. 南黄海秋季叶绿素 a 的分布特征与浮游植物的固碳强度[J]. 海洋学报, 2006, 28(3): 109-118.

- [2] Higgins R P, Thiel H. Introduction to the Study of Meiofauna [M]. London: Smithsonian Institution Press.1988: 1-18.
- [3] Olav Giere. Meiobenthology: The Microscopic Fauna in Aquatic Sediments [M]. Berlin Heidelberg: Springer-Verlag, 1993: 1-328.
- [4] 杨俊毅,王春生,刘镇盛,等.热带北太平洋深海小型底栖生物大尺度空间分析[J].海洋学研究,2005, 23(3):23-29.
- [5] 张培玉. 渤海湾近岸海域底栖动物生态学与环境质量评价研究[D]. 青岛: 中国海洋大学, 2005: 46-98.
- [6] 李万会. 潮滩湿地沉积物中叶绿素 a 浓度的变化特征 及其与沉积物特性间的关系初探[D]. 上海: 华东师 范大学, 2006.
- [7] 陈兴群,陈其焕,张明. 厦门潮间滩涂小型底栖硅藻和叶绿素的分布[J]. 生态学报, 1991, 11(4): 372-376.
- [8] 吕欣欣, 邹立, 刘素美, 等. 胶州湾潮间带沉积物有机碳和叶绿素的埋藏特征[J]. 海洋科学, 2008, 32(5):
 40-45.
- [9] 吴以平,刘晓收.青岛湾潮间带沉积物中叶绿素的分析[J].海洋科学,2005,29(11):8-12.
- [10] 李宝华,傅克忖,曾晓起.南黄海夏末叶绿素 a 的分 布特征[J].海洋与湖泊,1999,30(3):300-305.
- [11] 李肖娜,刘素美,吕瑞华,等.东、黄海沉积物中叶
 绿素的分析[J].中国海洋大学学报,2004,34(4):
 603-610.
- [12] 刘子琳,陈建芳,刘艳岚,等.北冰洋沉积物和海水 叶绿素 a 浓度分布的区域性特征[J].沉积学报,2008, 26(6):1035-1042.
- [13] Lawrence B. Cahoon, Richard A. Laws, Carrie J. Thomas. Viable diatoms and chlorophyll *a* in continental slope sediments off Cape Hatteras, North Carolina[J]. Deep Sea Research Part :Topical Studies in Oceanography, 1994, 41, 4-6: 767-782.
- [14] Richard A J, James R N, Roberta L M, et al. Benthic flux of biogenic elements on the Southeastern US continental shelf: influence of pore water advective transport and benthic microalgae Eckman [J]. Continental Shelf Research, 2000, 20: 109-127.
- [15] 李万会, 丁平兴. 滩涂沉积物中叶绿素 a 浓度与沉积 特性的关系[J]. 华东师范大学学报(自然科学版), 2007, (4): 26-33.
- [16] 张伯虎, 陈沈良, 刘焱雄, 等. 广西钦州湾海域表层 沉积物分异特征与规律[J]. 热带海洋学报, 2011,

30(4): 66-70.

- [17] GB17378-2007, 海洋监测规范.
- [18] GBT 12763-2007, 海洋调查规范.
- [19] 王荣. 荧光法测定浮游植物色素计算公式的修正[J].海洋科学, 1986, 10(3): 1-5.
- [20] 黄维, 汪品先. 南海沉积物总量的统计: 方法与结果.地球科学进展, 2006, 21(5): 465-473.
- [21] Baldwin B, Butler C O. Compaction curves[J]. American Association of Petroleum Geologist Bulletin, 1985, 69: 622-626.
- [22] 刘子琳,张涛,刘艳岚,等. 2004 年春季长江河口水 体与沉积物表层的叶绿素 a 浓度分布[J].海洋学研究, 2008, 26(4): 1-7.
- [23] Pennock J R, Sharp J H. Temporal alternation between light- and nutrient-limitation of phytoplankton production on a coastal plain estuary [J]. Marine Ecology Progress Series, 1994, 111: 275-288.
- [24] Nelson D M. Kinetics of silicic acid uptake by natural diatom assemblages in two Gulf Stream warm core rings [J]. Marine Ecology Progress Series, 1990, 62: 283-292.
- [25] Justic D, Rabalais N N, Turner R E, et al. Changes in nutrient structure of river dominated coastal waters: Stoichiometric nutrient balance and its consequences
 [J]. Estuarine Coastal and Shelf Science, 1995, 40: 339-356.
- [26] Redfield A C, Ketchum B H, Richards F A. The influence of organisms on the composition of seawater[C]//Hill M N. The Sea (Vol. 2). New York: Wiley-Interscience, 1963: 26-77.
- [27] 蓝文陆, 彭小燕. 茅尾海富营养化程度及其对浮游植物生物量的影响[J]. 广西科学院学报, 2011, 27(2): 109-112.
- [28] 张伯虎,陈沈良,谷国传,等. 钦州湾潮流深槽的成因与稳定性探讨[J]. 海岸工程, 2010, 29(3): 43-50.
- [29] 姚晓,山口一岩,邹立,等.黄河三角洲南部潮间带 沉积环境对底栖叶绿素 a 分布特征的影响[J]. 生态学 杂志, 2010, 29(9): 1762-1769.
- [30] Koppel V D, Herman P M J, Thoolen P, et al. Do alternate stable states occur in natural ecosystems Evidence from a tidal flat? [J]. Ecology, 2001, 82: 3449-3461.
- [31] 韦蔓新,何本茂. 钦州湾近20a来水环境指标的变化
 趋势 . 浮游植物生物量的分布及其影响因素[J].海
 洋环境科学, 2008, 27(3): 253-257.

海洋科学 / 2013 年 / 第 37 卷 / 第 5 期

- [32] 张继红. 滤食性贝类养殖活动对海域生态系统的影响及生态容量评估[D]. 北京: 中国科学院研究生院, 2008.
- [33] Giles H, Pilditch C A. Effects of diet on sinking rates and erosion thresholds of mussel *Perna canaliculus*[J]. Marine Ecology Progress Series, 2004, 282: 205-219.

The spatial distribution of Chlorophyll a in water and surface sediment of Maowei Sea during summer

LIAO Xiu-li^{1,2}, HUANG Hong-hui^{1,3}, LIU Hua-xue^{1,2}, DAI Ming^{1,3}, YU Jie^{1,2}, TIAN Zi-yang¹

South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China;
 Scientific Observing and Experimental Station of South China Sea Fishery Resources & Environments, Ministry of Agriculture, P. R. China, Guangzhou 510300, China;
 Key Laboratory of Fishery Ecology and Environment, Guangdong Province; Guangzhou 510300, China)

Received: Jun.,5,2012 **Key words:** Chlorophyll a; sediment; Maowei Sea

Abstract: An investigation of the spatial distribution of chlorophyll a (Chl-*a*) in seawater and surface sediment was carried out in Maowei Sea in June, 2011. The results showed that the Chl-*a* concentration in water ranged from 1.384 to 4.06 mg/m³, with an average of 2.143 mg/m³. Chl-*a* concentration in surface sediment ranged from 0.006 to 0.740 mg/kg (wet weight) with an average of 0.124 mg/kg. The spatial distribution features of Chl-*a* concentration in seawater and surface sediment were gradually reducing from the river mouth to the south area. Chl-*a* content in sediments took up 129.44% of that in above water column, indicated that the potential contribution of Chl-*a* in sediment on primary productivity was remarkable. Correlation analysis showed that Chl-*a* concentration in seawater and surface sediment (P<0.05) or very significant (P<0.01) positive correlation with inorganic nitrogen and macrobenthos population density.

(本文编辑:康亦兼)