线粒体 COI、COII 和 CYTB 基因在鲍属物种鉴定中的适用性分析

辛 - 1,2

(1. 中国科学院 海洋研究所, 山东 青岛 266071; 2. 中国科学院 研究生院, 北京 100049)

摘要:为寻找最适于进行鲍属物种鉴定的线粒体基因,测定了中国及日本沿海 5 个皱纹盘鲍(Haliotis discus hannai)群体共 16 个个体的线粒体基因 COI、COII 以及 CYTB 的完整序列,并结合杂色鲍(H. diversicolor)、疣鲍(H. tuberculata)和黑唇鲍(H. rubra)的线粒体基因组信息,比较分析了 3 种基因的 G+C 含量、种间/种内遗传距离和序列多态性等特征。研究结果表明,上述 3 种基因的序列构成和遗传多样性都具有一定相似性,且三者都可用于区分上述鲍属物种。鉴于目前 COI 具有完善的通用引物,并且具有较多的公布序列,本研究建议采用 COI 序列作为目前鲍属物种鉴定的 DNA 条形码。

关键词: 鲍属(*Haliotis*); DNA 条形码; 线粒体基因; 物种鉴定 中图分类号: O959.215; O3491; O951.3 文献标识码: A 文章编号: 1000-3096(2011)11-0058-05

鲍(Haliotis)是一种藻食性海洋动物,有 7 个种 分布于中国沿海^[1],其中皱纹盘鲍(H. discus hannai) 和杂色鲍(H. diversicolor)等都是重要的养殖贝类^[2]。 中国北方普遍养殖的皱纹盘鲍和原产于日本的盘鲍 (H. discus discus)在形态和生态上非常相似,对它们 的分类地位尚存在不同意见^[3-4];此外,原产于中国 台湾的九孔鲍(H. diversicolor supertexta)与南方沿海 的杂色鲍(H. diversicolor diversicolor)在外部形态和 生长特性方面虽存在一定差别,但对于是否将二者 划分为亚种仍有争议^[1,5]。

线粒体 DNA 作为一种常用的分子标记, 已在软体动物的系统发生、物种鉴定和种群结构等研究中得到广泛应用^[6-7]。线粒体 *COI* 基因中的部分区域由于其变异速率适中及具有完善的通用引物, 常被用作物种鉴定的 DNA 条形码^[8]。尽管基于线粒体基因的分子标记在鲍属物种鉴定中的应用已有报道^[9-11], 但对于线粒体基因组中 *COI*、*CYTB* 等基因在鲍属物种鉴定中的适用程度, 仍然缺乏深入了解。

为寻找更适于鲍属物种鉴定的线粒体基因,并 补充中国鲍属物种的线粒体基因相关信息,本研究 报道了中国及日本沿海 5 个皱纹盘鲍群体共 16 个个 体的线粒体基因 COI、COII 以及 CYTB 的完整序列, 并结合杂色鲍、疣鲍(H. tuberculata)和黑唇鲍(H. rubra)的线粒体基因组信息,对上述各基因在鲍属种 内和种间序列特征的异同进行了比较,以分析 COI、 COII 以及 CYTB 作为鲍属 DNA 条形码的适用性,为 基于线粒体基因的分子标记在鲍属物种鉴定中的进 一步应用提供理论依据。

1 材料和方法

1.1 样本采集

选取中国大连、青岛、威海、汕头以及日本宫 城 5 个皱纹盘鲍群体共 16 个个体,每个群体至少取 2 个个体,包含在至少 2 个取样点中。所有样本在 - 80 下冷冻保存,或固定保存于 70%~80%酒精 中。所有样本的采集地、样本编号、GenBank 序列 号等详细信息见表 1,其中 3 个杂色鲍的线粒体基因 组数据已在之前的相关工作中获得(数据未发表)。

1.2 DNA 片段的扩增与测序

采用 Sambrook 等^[12]介绍的苯酚氯仿法抽提样本 DNA。根据 GenBank 中皱纹盘鲍线粒体 DNA 序列(EU595789),设计以下引物用于片段扩增:*COI*: Hdis-COI-F (5'-TACCGAGGACTCACAATA-3')和 Hdis-COI-R (5'-CTTATCTTCTTCCACGACCA-3'); *COII*: Hdis-COII-F (5'-TGGGATGGATGTAGACAC TCGTGCTTAT-3')和 Hdis-COII-R(5'-AGCATTATTC-ACCTCCCT-3'); *CYTB*: Hdis-CYTB-F(5'-AACATCC

海洋科学 / 2011 年 / 第 35 卷 / 第 11 期

收稿日期: 2010-11-12; 修回日期: 2011-03-25

基金项目:国家863计划资助项目(2006AA10A07)

作者简介:辛一(1984-),男,陕西咸阳人,硕士研究生,主要从事海 洋生物分子生物学研究,电话: 0532-80662691, E-mail: xinyi14@gmail.com

表 1 样品名录及序列信息 Tab. 1 Sample information

物种名称	拉丁名	编号	采集地	GenBank 序列号		
				COI	COII	СҮТВ
皱纹盘鲍	H. discus hannai	HdisM1	日本宫城	JF748815	JF748814	JF748813
		HdisM2	日本宫城	JF748812	JF748811	JF748810
		HdisL1	辽宁大连	JF748796	JF748795	JF748794
		HdisL2	辽宁大连	JF748793	JF748792	JF748791
		HdisL3	辽宁大连	JF748790	JF748789	JF748788
		HdisL4	辽宁大连	JF748787	JF748786	JF748785
		HdisL5	辽宁大连	JF748784	JF748783	JF748822
		HdisL6	辽宁大连	JF748821	JF748820	JF748819
		HdisL7	辽宁大连	JF748818	JF748817	JF748816
		HdisS1	山东威海	JF748809	JF748808	JF748807
		HdisS2	山东威海	JF748806	JF748805	JF748804
		HdisS3	山东威海	JF748803	JF748830	JF748829
		HdisS4	山东青岛	JF748828	JF748827	JF748826
		HdisS5	山东青岛	JF748825	JF748824	JF748823
		HdisG1	广东汕头	JF748802	JF748801	JF748800
		HdisG2	广东汕头	JF748799	JF748798	JF748797
		EU595789	GenBank*	ACB73222	ACB73223	ACB73229
杂色鲍	H. diversicolor	YN1	越南广义	ADX36048	ADX36049	ADX36055
		YN2	越南广义	ADX36061	ADX36062	ADX36066
		S16	中国福建	ADX36074	ADX36075	ADX36079
疣鲍	H. tuberculata tuberculata H. tuberculata coccinea H. tuberculata ssp.	NC013708	GenBank*	YP003359427	YP003359428	YP003359434
		FJ605486	GenBank*	ACL99775	ACL99776	ACL99782
		FJ605487	GenBank*	ACL99788	ACL99789	ACL99795
黑唇鲍	H. rubra	NC005940	GenBank*	YP026069	YP026070	YP026076
加州海兔	Aplysia california	NC005827	GenBank*	AAS67857	AAS67863	AAS67862

注:*表示从 GenBank 中下载的序列, 杂色鲍线粒体基因组数据已在相关工作中获得

CAGAAGAACAC-3')和 Hdis-CYTB-R(5'-CCCACT-ACCATCACCAAA-3')。反应条件如下:起始 94℃预 变性 3 min,然后 94℃变性 30 s,48~60℃退火 50 s, 72℃延伸 1~4 min,35个循环。最后 72℃反应 10 min。 反应体系 25 µL,包括 2 µL dNTP (10mmol/L),正反 向引物各 1µL(10 µmol/L),2.5 µL 10×buffer(Mg²⁺ plus),0.4 µL rTaq 酶(5U/µL, Takara),1 µL DNA 模板 (50 ng/µL),以及超纯水 17.1 µL。PCR 产物采用博日 柱式胶回收试剂盒纯化,利用 ABI 3730x1 测序仪测 序,每个碱基至少达到 2 倍的测序覆盖度。

1.3 数据分析

原始测序峰图文件首先利用软件 Phred 处理, 使 每个碱基的质量值在 20 以上, 然后在默认参数下用 软件 Phrap 拼接^[13-14], 拼接结果和序列碱基质量通过 Consed 软件检查^[15]。使用 MEGA4.1^[16]内置的 clustalW 进行序列比对(alignment)和碱基组成, 计算 基于 Kimura 双参数距离模型(K2P)^[17]的种内和种间 遗传距离。采用 DnaSP 4.10.7 分析种间及种内的序 列多态性^[18]。4 种鲍非同义替代率(non-synonymous substitutions, Ka)和同义替代率(synonymous substitutions, Ks) 比率的计算使用 KaKs_Calculator^[19]。

2 结果与讨论

2.1 基因特征

*COI、COII*和 *CYTB*全序列的长度在鲍属 4 个物种间相同,分别为 1,542 bp、696 bp和 1,140 bp。*COI、COII*和 *CYTB*的 G+C 平均含量为 38.2%~45.2%,低于 A+T 的平均含量 54.8%~61.8%,密码子第二位的

G+C 含量在个体间的波动范围最小,其均值与第三 位基本接近,而密码子第一位的 G+C 含量波动范围 最大,且均值明显偏高。此外通过计算发现,*COI*、 *COII*和 *CYTB*的 Ka/Ks 均值依次为 0.010、0.021 和 0.033,说明 3 种基因都承受强烈的负选择压力,其 中 *COI*所承受的负选择压力最大,表明 *COI* 是上述 3 种基因中最保守的基因。

2.2 遗传距离比较

本研究的 4 种鲍 COI、COII 和 CYTB 的种内最 大遗传距离依次为 8.8%、10.4%和 9.5%,若去除种 内亚种间遗传距离的影响,则种内最大遗传距离依 次为 1.3%、1.2%和 1.7%,而种间最小遗传距离依次 为 16.4%、16.1%和 17.7%。如图 1 所示,COI、COII 和 CYTB 的种间遗传距离和种内遗传距离具有显著 差异,根据计算,COI、COII 和 CYTB 的种间遗传距 离均值与种内遗传距离均值之比依次为 25.6、23.9 和 21.5。Hebert 等认为种内与种间的标准差异阈值 (standard divergence threshold value)应为种内平均遗 传距离的 10 倍(10 倍法则)^[20]。按照这个标准,由于

图 1 鲍属种间和种内个体间 COI、COII 和 CYTB 遗传距 离(基于 K2P)分布情况

Fig. 1 Distribution of intraspecific and interspecific K2P distance based on COI, COII and CYTB of Haliotis

本研究中上述 3 种基因的鲍属条形码差异阈值应分 别为 6.5%、6.1%和 8.9%, 而鲍属种内遗传差异最大 值分别为 1.3%、1.2%和 1.7%, 属内不同种间遗传差 异最小值分别为 16.4%、16.1%和 17.7%, 因此利用 基于 *COI、COII* 和 *CYTB* 的分子标记能够将本研究 涉及的鲍属种类全部有效区分开, 证实了本研究所 选用的鲍属物种存在种间的条形码间隙。

2.3 基因序列多态性分析

比较分析了基于 COI、COII 和 CYTB 序列的鲍 属种间及种内单核苷酸多态性(single nucleotide polymorphism, SNP)。如图 2 所示, 4 种鲍的种间与种 内单核苷酸多态性形成明显分界。鲍属 COI、COII 和 CYTB 的序列多态性水平表明、虽然上述 3 种基因 的全序列都可用于区分鲍属物种,但用基因不同区 域进行鲍属物种鉴定时,其有效性存在差异。首先, 图 2 中的基因区域 V1、V2、V4 和 V6 在种内和种间 的单核苷酸多态性较其他区域更加丰富,因此这些 区域可能更适用于区别鲍属种内和种间的序列差异; 其次, COII 中的高变区 V3 和 CYTB 中的高变区 V5 在疣鲍亚种内的单核苷酸多态性水平明显高于相应 区域内皱纹盘鲍和杂色鲍的地理群体间水平,说明 在进行鲍属亚种鉴定时, COII和 CYTB 中可能存在比 COI 通用区域更为有效的 DNA 条形码、从而为鲍的 亚种鉴定提供了新的 DNA 条形码参考序列; 最后, 皱纹盘鲍不同群体的序列多态性水平虽在 COI 和 CYTB 的部分区域中相对较高、但由于各群体的取样 个数未达到有效的统计学标准、因此无法对皱纹盘 鲍群体之间的遗传多样性进行深入调查。为了开发 出可靠的皱纹盘鲍群体间 DNA 条形码、需要在今后 的工作中增加皱纹盘鲍各群体的样本数、以及扩大 对线粒体基因组的探测范围等。

在本研究中,遗传距离和序列多态性的结果表 明 COI、COII 和 CYTB 都可用于区分鲍属物种。鉴 于目前 GenBank 中鲍属 COI 的发表序列较 COII 和 CYTB 更多,且 COI 具有完善的通用引物,可以更加 方便高效地进行研究,本研究建议采用 COI 序列作 为目前鲍属物种鉴定的 DNA 条形码。

致谢:本研究所用样本、试剂、测序等一切费用均由刘 晓研究员提供,在实验设计、数据分析和论文撰写全过 程中都得到了刘晓研究员的大力支持与悉心指导,在此 表示衷心感谢!任建峰博士参加了部分序列分析工作, 谨此致谢!

图 2 基于 COI、COII 和 CYTB 序列的鲍属不同种内及种间核苷酸多态性比较图

Fig. 2 Comparison of intraspecific and interspecific of nucleotide diversity based on *COI*, *COII* and *CYTB* sequences of *Haliotis*.
注: x 轴表示每取 200bp 核苷酸序列的滑动窗口中点,图上方的条形图指示 *COI*、*COII* 和 *CYTB* 的相应位置,灰色色块指示高变区(V) 位置

参考文献:

- [1] 吕端华.中国近海鲍科的研究[J].海洋科学集刊, 1978, 14: 89-98.
- [2] Zhang G F, Que H Y, Liu X, et al. Abalone mariculture in China[J]. Journal of Shellfish Research, 2004, 23(4): 947-950.
- [3] 黎中宝,刘文彪,韩芳,等.4种经济鲍遗传多样性与 分化的研究[J]. 中国生态农业学报,2005,13(4): 15-18.
- [4] 小林正裕,木岛明博,藤尾芳久.日本沿岸皱纹盘鲍 形态的地理分布[J].水产育种(日),1992,17:39-48.
- [5] 聂宗庆. 鲍的养殖与增殖[M]. 北京:农业出版社, 1989.
- [6] 程汉良,夏德全,吴婷婷,等.6种帘蛤科贝类及4个
 地理种群文蛤线粒体 COI 基因片段序列分析[J].海
 洋学报,2007,29(5):109-116.
- [7] Chen A H, Li Z X, Feng G N. Phylogenetic relationships of the genus *Meretrix* (Mollusca: Veneridae) based on mitochondrial *COI* gene sequences[J]. Zoological Research, 2009, 30(3): 233-239.
- [8] 陈军,李琪,孔令锋 等.基于 COI 序列的 DNA 条 形码在中国沿海缀锦蛤亚科贝类中的应用分析[J]. 动物学研究, 2010, 31(4): 345-352.

- [9] An H S, Jee Y J, Min K S, et al. Phylogenetic analysis of six species of Pacific abalone (Haliotidae) based on DNA sequences of 16S rRNA and cytochrome coxidase subunit I mitochondrial genes[J]. Marine Biotechnology, 2005, 7(4): 373-380.
- [10] Estes J A, Lindberg D R, Wray C. Evolution of large body size in abalones (*Haliotis*): patterns and implications[J]. Paleobiology, 2005, 31(4): 591-606.
- [11] 王鹭骁,柯才焕,王志勇,等.中国沿岸几种鲍线粒体 16S rRNA 基因片段序列比较及鲍属系统发育[J].
 中国水产科学,2006,13(2):167-173.
- [12] Sambrook J, Fritsch E F, Maniatis T. Molecular cloning: a laboratory manual. 2nd[A]. New York: Cold Spring Harbor Laboratory, 1989: 545.
- [13] Ewing B, Hillier L, Wendl M C, et al. Base-calling of automated sequencer traces using phred. I. Accuracy assessment[J]. Genome Research, 1998, 8(3): 175-185.
- [14] Ewing B and Green P. Base-calling of automated sequencer traces using phred. II. Error probabilities[J]. Genome Research, 1998, 8(3): 186-194.
- [15] Gordon D, Abajian C, Green P. Consed: A graphical tool for sequence finishing[J]. Genome Research, 1998, 8(3): 195-202.
- [16] Tamura K, Dudley J, Nei M, et al. MEGA4: Molecular

Marine Sciences / Vol. 35, No. 11 / 2011

evolutionary genetics analysis (MEGA) software version 4.0[J]. Molecular Biology and Evolution, 2007, 24(8): 1596-1599.

- [17] Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide-Sequences[J]. Journal of Molecular Evolution, 1980, 16(2): 111-120.
- [18] Rozas J, Sanchez-DelBarrio J C, Messeguer X, et al. DnaSP, DNA polymorphism analyses by the coalescent and other methods[J]. Bioinformatics, 2003, 19(18):

2496-2497.

- [19] Zhang Z, Li J, Zhao X Q, et al. KaKs_Calculator: calculating Ka and Ks through model selection and model averaging[J]. Genomics Proteomics Bioinformatics, 2006, 4(4): 259-263.
- [20] Hebert P D N, Ratnasingham S, deWaard J R. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species[J]. Proceedings of the Royal Society of London Series B-Biological Sciences, 2003, 270: 96-99.

Feasiblitiy of application of *COI*, *COII* and *CYTB* in *Haliotis* species identification

XIN Yi^{1, 2}

(1.Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; 2. Graduate University, Chinese Academy of Sciences, Beijing 100049, China)

Received: Nov., 12, 2010 **Key words:** *Haliotis*; DNA barcode; mitogenome; species identification

Abstract: In order to select appropriate mitochondrial genes for *Haliotis* species identification, *COI*, *COII* and *CYTB* of sixteen *Haliotis discus hannai* individuals collected from five populations along Chinese and Japanese coasts, were sequenced in this study. With available mitogenomes of *H. diversicolor*, *H. tuberculata* and *H. rubra*, G+C content, intra-/inter-specific K2P distance, and sequence diversity were compared among *Haliotis*. The results show that sequence composition, genetic diversity of *COI*, *COII* and *CYTB* are similar. Furthermore, both genetic distance and diversity results imply that all these genes can be used for *Haliotis* species identification. Since there are effective, universal primers for *COI* and more *COI* sequences published than the other two genes in *Haliotis*, we suggest that *COI* could be used as a DNA barcode for *Haliotis* species identification.

(本文编辑:梁德海)