研究论文 · 1100 ARTICLE

东大港水道流速垂线分布探讨

吴德安¹,崔效松²,童朝锋¹,张忍顺³

(1. 河海大学水文水资源与水利工程科学国家重点实验室, 江苏南京 210098; 2. 长江水利委员会长江下游水文水资源勘测局, 江苏南京 210090; 3. 南京师范大学海洋及滩涂研究所, 江苏南京 210097)

摘要:对辐射沙洲海域东大港水道 4 号站位连续 2 个潮次的流速测量资料进行了分析、研究, 拟合给出了流 速垂线分布关系, 并根据实际测量资料率定了该站位各时刻 6 个水层的浑水水流的尾流函数项表达式, 这些 表达式表明浑水水流的尾流函数项是相对深度和摩阻速度的函数。

关键词:辐射沙洲;潮流;垂线分布;拟合;尾流函数 中图分类号:P731.23 文献标识码:A

文章编号:1000 3096(2008) 03 0049 06

挟沙水流流速垂线分布规律一直是许多学者努 力探讨的问题。Einstain 等^[1]的实验表明挟沙水流流 速分布规律在主流区仍符合对数分布,但卡门常数 k随含沙浓度或垂线梯度的增加而减小。他们认为近 底水层流速分布偏离对数分布规律,且偏离范围因含 沙量的增加而加大。Coleman^[2]在通过水槽试验和重 新分析上述作者的资料后,认为在近底水层 k 与含沙 量无关,即与清水水流 k= 0.4的情况相等。并认为流 速分布的对数律只适应于近底水层,在主流区,由于存 在一个尾流区,其分布规律偏离对数律。

对于上述含沙量对 k 的影响基本问题, 张红武 等^[3]进行了研究, 并根据资料拟合得出 k 与体积含 沙量 S_x 的点群关系式^[3,4]:

 $k = k_0 [1 - 4.2 \sqrt{S_v} (0.365 - S_v)]$

经验证,上式计算结果与黄河干支流实测资料较为 吻合。在此基础上,张红武引入"涡湍模式",得出张 红武流速分布公式^[5]:

 $\frac{u_m - u}{u^*} = \frac{\pi}{2C_n} - \frac{1}{C_n} \left[\sqrt{1 - \frac{z}{h}} \frac{z}{h} + \arcsin \sqrt{\frac{z}{h}} \right]$

该公式克服了对数公式在近底水层出现偏小甚至负 值的缺陷。在水体近底层具有较好的适应性。

倪晋仁、惠遇甲¹⁰对实测资料进行分析、研究后 表明,两相混合体的浑水流速分布大都较清水时流 速分布更不均匀,他们归纳出两种类型的流速分布, 即 I型和 II型。 I型分布指沿整个水深仍可用对数 公式表达但卡门常数 k 值变小的分布。 II型分布则 是指主流区仍可用对数公式表达, 且卡门常数 k 值 变小在近底水层亦近似符合对数律的分布。两区的 卡门常数值有所不同, II型分布在近底水区其斜率 与清水时的大致一样或略小于后者。上述的两种流 速分布类型可以用下述表达式来进行表达。

$$\begin{cases} \frac{u_m - u}{u^*} = \frac{1}{k} \ln \frac{h}{z} + f(x_1, x_2, \dots, x_i) \\ f(x_2, x_2, \dots, x_i) \ge 0, k = 0, 4 \end{cases}$$
(I)

式中, um 为水面最大流速; u* 为水体摩阻流速, xi 表示影响两相流流速分布的各个变量, f (x1, x2, ..., xi) 为两相流的尾流函数项。f (x1, x2, ..., xi) 的具体表达式主要根据实测资料进行分析、率定, 从理论上求解目前还存在实际的困难。

潮流,特别是潮沟潮流,具有很强的方向性,这 些特征与陆地河流较为相似,因此,有关河流流速的 分布规律对水道潮流流速的垂线分布规律研究具有 一定的借鉴意义。

南黄海海域为半日潮型,涨潮时,潮流自北、东 北、东和东南方向涌向弶港海岸,落潮时,潮流以弶 港为中心,呈150°的扇面向外逸散,形成以弶港为中

收稿日期: 2006 11-28; 修回日期: 2007 12-28

基金项目:国家自然科学基金资助项目(50709007)

作者简介:吴德安(1968),男,江苏徐州人,博士,主要从事海岸动力 和数值模拟方面的研究工作

心的放射状潮流场⁷¹。该海域在 20 世纪 80 年代以 来开展了大规模的调查和课题专门研究工作,但有 关该海域的潮流主槽的流速分布规律等方面的基础 研究还没有有效开展起来。作者拟用该海域的潮流 测量资料,运用拟合分析方法对西洋南部东大港水 道的潮流流速垂线分布规律进行研究。

1 潮变化特征

条子泥北尖子及其向北伸展的水下部分,把西 洋南段分成东西两槽。北尖子以西则逐渐演变为死 生港及西大港北支的口门浅滩,水深仅在3m左右。 其东槽一般称为东大港,水深在10m以上。作者对 辐射沙洲海域水道的潮流、悬沙、底质等进行了多站 位(33个站次)现场布点测量。其中,在北尖子末梢 和东沙之间,即如图1所示的东大港北端主槽,设立 4号测量站位,进行连续两个潮次的测量。

图 2 所示的过程曲线是本站位所测量得到的水 深过程曲线,水深过程曲线有下述特征:涨潮时,水 深增长较快,从低潮时水深上升到高潮时水深约需 5 h。落潮过程水深变化较缓慢,从高潮时水深终到 低潮时水深约需 7 h。涨急流速出现在高潮时刻前 2 h,落急流速出现在低潮时刻前 2 h。显然,最低水 位和最高水位都出现在憩流时刻。潮汐性质属于典 型的半日潮,一个潮周期内,涨落潮历时之比约为 5:7。

图 2 各层速度矢量、水深时间过程

图 2 所示, 各层流向基本一致, 涨潮平均流向是 145°, 为东南偏西向, 落潮平均流向是 347°, 为北稍偏 西向。计算所得涨潮最大垂线平均流速是 2.31 m/s, 流向为 142°; 落潮最大垂线平均潮流速是 0.99 m/s, 流向是 346°。涨、落潮最大垂线平均流速的流向和涨、 落潮的平均流向接近一致。

2 潮流流速的垂线分布

流速分布拟合及分析:图 3 是根据该站位各层

流速测量值绘成的各个时刻(每隔 1 h)的流速分布 (点虚线)及用(1)式函数形式进行拟合所得的对应 拟合曲线(实线)。图 3 可见,除了在憩流时刻附近, 流速较小,分布较为紊乱,无一定规律外,其它时刻 各层流速分布是相当有规律的,可用(1)式来拟合流 速分布,且拟合相关性相当好。说明该站位流速分 布符合(1)式所表达的分布规律,在此基础上根据测 量结果和相关计算,对式(1)中拟合系数 *a*, *b*进行率 定,以求得具有实用价值的流速分布关系式。为篇

50

图 3 测量流速的垂线分布及其拟合曲线

Fig. 3 The surveyed velocity distribution and its fitting curve of No.4 station

拟合曲线表达形式为: $u = b \ln \left[\frac{z}{ah} \right]$ (1) 其中, a, b 为拟合系数。由(1)式,得: $u = b \ln \left[\frac{z}{h} \right]$ blna。设表层流速 u_s ,有 $u_s = -b \ln a$ 。水体次表层流 速设为 $u^{0.2}$,有 $u^{0.2} = b \ln 0$.8 - blna,得: $b = \frac{u_s - u_{0.2}}{-\ln 0.8}$ 有 $u = \frac{u_s - u_{0.2}}{-\ln 0.8} \ln \left[\frac{z}{h} \right]$ + u_s ,可转化为: $\frac{u_s - u}{u_s - u_{0.2}} = \frac{1}{\ln 1.25} \ln \left[\frac{h}{z} \right]$ (2)

由于流速垂线分布具有规律性,因此表层和次表层的流速之间应该有很好的相关关系(图4),拟合得出 $u_{0.2}=0.966u_{s}-0.03$,相关系数r=0.998。于是(2)式可化为:

$$\frac{u_s - u}{0.034u_s + 0.03} = \frac{1}{\ln 1.25} \ln \left(\frac{h}{z}\right)$$
(3)

根据 Prandtl 混合长度理论, 摩阻速度可以写为^[8]:

$$u^* = \frac{kuz}{\ln\frac{4h}{z_0} - \frac{8}{3}}$$

其中,h 为水深,k 为卡曼常数, $k \approx 0.4$, z_0 是海底粗 糙长度,由实际测量资料率定而得,uz 为垂线平均流 速。于是,摩阻流速与表层速度之间可建立图 5 所 示的对应关系,拟合关系为:

$$u_s = 41.53u_* - 0.0703,$$

相关系数 r= 0.994,代入(3)式得:

$$\frac{u_{s}-u}{1.411u_{*}+0.028} = \frac{1}{\ln 1.25} \ln\left(\frac{h}{z}\right)$$
(4)

对(4)进行整理得:

$$u = u_s - \frac{1.411u^* + 0.028}{\ln 1.25} \ln \left(\frac{h}{z}\right)$$
(5)

根据(5)式,可以进行流速分布的实际计算。 对(5)式进行如下处理:

$$\frac{u - u}{u^*} = 6.323 \ln\left(\frac{h}{z}\right) + \frac{0.125}{u^*} \ln\left(\frac{h}{z}\right) \tag{6}$$

根据测量资料分析,水体含沙量较小,由张红武等的 关系式^[3]: $k = k_0[1 - 4.2 \sqrt{S_v}(0.365 - \sqrt{S_v})]$,求得 k 取 0. 392~ 0.4 之间, 取 k = 0.4 得:

$$f = \left(3.\ 823 + \ \frac{0.\ 125}{u^*}\right) \ln\left(\frac{h}{z}\right)$$
(8)

(8)式可见, f 值是随相对水深而变化的量, 系数项 3.823 是在 k= 0.4 的情况下取得的, 此式依赖于 k 的取值, 如果以张红武率定关系计算 k 值, 那么上述 的f 也应是悬沙含量及其垂直梯度的函数。计算表 明, 由于悬沙含量较小, 其对 k 值的影响可忽略。图 3 各时刻拟合曲线可以看出, 拟合曲线对于临底层偏 离稍大。运用(7)式对该站位进行计算验证表明, 在 临底层以上, 计算值和实测值符合得很好。在临底

层处, (7) 式计算值与实测值相比偏小。调整f 中的 系数, 在临底层及其以下, 取f = 7. 17 $\ln\left(\frac{h}{z}\right)$, 各时刻 临底层计算结果和实测值符合较好。这说明, 在临 底层及以下也应满足 $\frac{u_z - u}{u_*} = \frac{1}{k}\left(\frac{h}{z}\right) + f$ 分布, 但是 f 表达式中的系数要作相应的调整。流速率定关系 式合写如下:

$$\frac{u_s - u}{u^*} = \frac{1}{k} \ln\left(\frac{h}{z}\right) + f \qquad (9)$$

其中, $f = \left(3.823 + \frac{0.125}{u^*}\right) \ln\left(\frac{h}{z}\right)$, 在临底层及其以
下则取 $f = 7.17 \ln\left(\frac{h}{z}\right)$ 。

图 4 次表层流速和表层流速之间的关系

Fig. 4 The fitting relationship between $u_{0,2}$ and u_s

图 5 表层流速与摩阻流速之间的关系

Fig. 5 The fitting relationship between u_s and u_*

图 6 是根据上述拟合、率定的关系式(9) 在西洋 水道 7 号站位的部分验证情况,速度单位:m/s。验 证表明计算值和对应实测值吻合较好,说明拟合关 系式(9) 可以反映该水道的流速垂线分布。笔者分 别用对数流速分布公式和张红武流速分布公式与拟 合关系式(9) 式在上述 4# 站位进行了计算对比,结 果发现,在表层、次表层,各式计算值和实际测量值 基本一致,而在以下各层,流速对数分布公式和张红 武流速分布公式计算值与实际值相比偏大,但(9) 式 计算结果与实际值基本一致。

表达式(9) 是一个平均的、概化的结果, 它可以从总体上反映流速的垂线分布规律。适当率定临底层的 *f*, 可较为精确地求得速度的垂线分布。

计算和验证表明,在各潮流时刻,水体各层的f 是随相对水深而变化的,如果能确定水体各层f的 变化规律,显然可以进一步准确确定流体流速的垂 线分布规律。参照(9)的流速分布形式,不妨设流速 分布形式为:

$$\frac{u_s - u}{u^*} = \frac{1}{k} \ln \left(\frac{h}{z} \right) + \left(A + \frac{B}{u^*} \right) \ln \left(\frac{h}{z} \right)$$
(10)

其中, *A*, *B*为待定系数, 可根据实际测量资料率定。 把(10)式化为:

$$u = u_s - \frac{u_s}{k} \ln\left(\frac{h}{z}\right) - u_s A \ln\left(\frac{h}{z}\right) - B \ln\left(\frac{h}{z}\right)$$

海洋科学/2008年/第32卷/第3期

52

图 7 各层流速与摩阻速度之间的拟合关系

Fig. 7 The fitting relationship between velocity of each water layer and friction velocity

其中, uo, uo. 2, uo. 6, uo. 8, ui 分别为距表层 0.5 m, 0. 2h, 0. 4h, 0. 6h, 0. 8h, (h-0.5)所对应的流速, h 是水深, 单位为 m。us 是指表层流速, 当然, 在实际 测量中, 一般用 uo 来表示表层流速, 实际上它们是 有一定差别的。各层流速与摩阻流速 u* 的拟合关 系式及相关系数如下:

 $u^{0} = -0.096\ 23 + 41.\ 174u^{*}, r = 0.991;$ $u_{0.2} = -0.067\ 6+\ 39.\ 361u^{*}, r = 0.993;$ $u_{0.4} = -0.050\ 1+\ 36.\ 328u^{*}, r = 0.988;$ $u_{0.6} = -0.045\ 8+\ 31.\ 89u^{*}, r = 0.970;$ $u_{0.8} = -0.027\ 0+\ 26.\ 411u^{*}, r = 0.940;$ $u_{1} = -0.044 + 23.040u^{*}, r = 0.910_{\circ}$

虽然,相关系数有向下减小的趋势,在临底层附近,相关系数 *r* = 0.910 足以保证临底层线性关系式的基本成立。与(11)或(12)式对比,可求得:

$$f_{0} = 0.356 + \frac{1}{k} \ln \left(1 - \frac{1}{2h} \right) - \frac{25.93}{1000u^{*}};$$

$$f_{0.2} = \left(7.220 - \frac{0.012}{u^{*}} \right) \ln \left(\frac{5}{4} \right) = 1.611 - \frac{2.7}{1000u^{*}};$$

$$f_{0.4} = \left(7.684 - \frac{0.039}{u^{*}} \right) \ln \left(\frac{5}{3} \right) = 3.925 - \frac{20.02}{1000u^{*}};$$

 $f_{0.6} = \left(8.021 - \frac{0.026}{u^*}\right) \ln\left(\frac{5}{2}\right) = 7.349 - \frac{24.5}{1000u^*};$ $f_{0.8} = \left(6.894 - \frac{0.026}{u^*}\right) \ln\left(\frac{5}{1}\right) = 11.095 - \frac{43.3}{1000u^*};$ $f_{1} = 18.49 - \frac{1}{k} \ln(2h) - \frac{26.3}{1000u^*};$

其中, f₀, f_{0.2}, f_{0.4}, f_{0.6}, f_{0.8}, f₁ 分别为距表层 0.5 m, 0. 2h, 0. 4h. 0. 6h, 0. 8h, (h- 0. 5)的浑水水流的尾流 函数项, 显然 f_s= 0。

运用上述浑水水流尾流函数项拟合表达式f₀, f_{0.2},f_{0.4},f_{0.6},f_{0.8},f₁在4号站位、7号站位进行速 度分布的验证计算,表明各层速度计算值和实际测 量值基本相当,吻合程度要优于(9)式的计算结果。

上述结果表明,水深 h 是 f o, f 1 的一个参量,但 二者随水深的变化又有所不同,在其他条件不变的 情况下, f o 随水深增大而增大, f 1 随水深增大而减 小,如果转换成相对深度来讨论,水深增大, f o 对应 的相对深度增大, f 1 对应相对深度减小,即这两层尾 流函数对应的相对深度在潮过程中是变化的,它们 随相对深度的增大而增大。其余各层由于相对深度 是常数,尾流函数项的变化只与摩阻速度有关。 各层尾流函数项都是随摩阻速度增大而增大 的。实际测量和计算结果表明,在同一时刻, *f* 在水 体中的变化,一般情况下是向下增大的,但这一变化 趋势对于非恒定流并不总是成立,在流速较小的憩 流附近时刻,水体中*f* 向下的变化,有时会出现先增 后减等变化情况。

3 总结

作者对辐射沙洲东大港 4# 站位连续 2 个潮次 流速测量资料进行了分析、研究, 拟合给出了该站位 的流速垂线分布关系。对浑水水流的尾流函数项进 行了系统的分析与研究, 根据实际测量资料拟合给定 了该站位的 6 个水层的 fo, fo2, fo4, fo6, fo8, f1表 达关系式, 表明它们是相对深度和摩阻流速的函数。

各层流体尾流函数项与 1/ u* 的一次关系是在 各层流速与摩阻速度的的线性拟合关系基础上推导 的。因此, 尾流函数项与摩阻速度的一次反比关系 对实际的反映准确程度与线性拟合的相关性有关。 在相对深度 0.8 以上, 线性拟合关系相关性很好, 在 相对深度 0.8 以下, 虽然线性拟合的相关系数在 0.9 以上, 速度的计算值与实际测量值也相当吻合, 但从 图 7 中可以看到, 数据点偏离线性分布相对要大些, 说明流体水体的尾流函数项有更复杂的表达形式, 1/*u** 的一次关系只不过是此表达形式的近似表达, 这一近似表达在流体中上层近似程度较好,在近底 层水体,近似程度相对差些。尾流函数项*f* 更准确 的表达以及尾流函数*f* 与悬沙含量、悬沙含量梯度 之间的关系需要作近一步的研究。

参考文献:

- [1] 钱宁. 高含沙水流运动[M]. 北京:清华大学出版社, 1989. 35-40.
- [2] Coleman N L. Velocity profiles with suspended sediment[J]. J of Hydraulic Research, 1981, 19(3): 234 243.
- [3] 张红武,张清.黄河水流挟沙力计算公式[J].人民黄河,1992,11: F10.
- [4] 张红武. 黄河泥沙基本理论研究进展述评[J]. 人民黄河, 1996, 12: 22-28.
- [5] 张红武. 挟沙水流流速的垂线分布公式[J]. 泥沙研 究, 1995, 2: 1-10.
- [6] 倪晋仁,王光谦,张红武.固液两相流理论及最新应用[M].北京:科学出版社,1991.36-47.
- [7] 张忍顺,陈才俊. 江苏岸外沙洲演变与条子泥并陆前 景研究[M]. 北京:海洋出版社, 1992. 54 75.
- [8] Fang G, Ichiye T. On the vertical structure of tidal currents in a homogeneous sea[J]. Geophys J Roy Astr Soc, 1983, 73: 65-78.

Vertical distribution character of current velocity in Dongdagang channel

WU De an^{1, 2}, CUI Xiao song², TONG Chao feng¹, ZHANG Ren shun³

(1. The State Key Laboratory of Hydrology and Hydraulic Engineering, Nanjing 210098, China; 2. Lower Yangtz River Hydrology and Water Resources Survey Bureau, Nanjing 332000, China; 3. The Ocean and Mudflat Institute of Nanjing Normal University, Nanjing 210097, China)

Received: Nov., 28, 2006 Key words: radial sand ridges; tidal current; vertical distributing; fitting; remainder current function term

Abstract: On the basis of analyzing the two tidal periods' successive survey results on the tidal current at No. 4 station in the tidal channel called Dongdagang, the characters of tidal current and space distribution of current vector are further studied. The vertical distribution of current velocity is studied and the surveyed current velocity data are fitted to the relative depth. The vertical distribution relationship between velocity and relative depth is discovered. Based on the surveyed current velocity data, the remainder current functions of six water layers are calibrated by the fitting method. The remainder current function term is the function of friction velocity and relative depth.